論文の概要: Classification-Based Automatic HDL Code Generation Using LLMs
- arxiv url: http://arxiv.org/abs/2407.18326v1
- Date: Thu, 4 Jul 2024 09:00:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:35:56.012889
- Title: Classification-Based Automatic HDL Code Generation Using LLMs
- Title(参考訳): LLMを用いた分類ベース自動HDLコード生成
- Authors: Wenhao Sun, Bing Li, Grace Li Zhang, Xunzhao Yin, Cheng Zhuo, Ulf Schlichtmann,
- Abstract要約: 大規模言語モデル(LLM)は、デジタル回路用のハードウェア記述言語(HDL)コードを生成する能力を実証している。
LLMは幻覚の問題に悩まされ、誤ったHDLコードの生成や仕様の誤解につながる。
我々は,LLMの幻覚を緩和し,HDLコード生成の性能を向上させるために,人間の専門性に着想を得た手法を提案する。
- 参考スコア(独自算出の注目度): 9.630310313347657
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: While large language models (LLMs) have demonstrated the ability to generate hardware description language (HDL) code for digital circuits, they still suffer from the hallucination problem, which leads to the generation of incorrect HDL code or misunderstanding of specifications. In this work, we introduce a human-expert-inspired method to mitigate the hallucination of LLMs and improve the performance in HDL code generation. We first let LLMs classify the type of the circuit based on the specifications. Then, according to the type of the circuit, we split the tasks into several sub-procedures, including information extraction and human-like design flow using Electronic Design Automation (EDA) tools. Besides, we also use a search method to mitigate the variation in code generation. Experimental results show that our method can significantly improve the functional correctness of the generated Verilog and reduce the hallucination of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、デジタル回路用のハードウェア記述言語(HDL)コードを生成する能力を示したが、幻覚の問題に悩まされ、誤ったHDLコードの生成や仕様の誤解につながる。
本研究では,LLMの幻覚を緩和し,HDLコード生成の性能を向上させるために,人間の専門性に着想を得た手法を提案する。
まず、LLMが仕様に基づいて回路のタイプを分類する。
次に,電子設計自動化(EDA)ツールを用いて,情報抽出や人為的デザインフローなどのタスクをサブプロデューサに分割した。
また、コード生成のばらつきを軽減するために検索手法も使用しています。
実験結果から,本手法は生成したVerilogの機能的正しさを著しく向上し,LLMの幻覚を低減できることが示された。
関連論文リスト
- zsLLMCode: An Effective Approach for Functional Code Embedding via LLM with Zero-Shot Learning [6.976968804436321]
大型言語モデル(LLM)はゼロショット学習の能力を持ち、訓練や微調整を必要としない。
LLMを用いた関数型コード埋め込みを生成する新しいアプローチであるzsLLMCodeを提案する。
論文 参考訳(メタデータ) (2024-09-23T01:03:15Z) - Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis [0.7580487359358722]
大規模言語モデル(LLM)は精度に苦しむが、リスクの高いアプリケーションには適さない。
コード生成を LLM で処理する部分と,形式的なメソッドベースのプログラム合成で処理する部分の2つに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-09-18T15:59:06Z) - Genetic Instruct: Scaling up Synthetic Generation of Coding Instructions for Large Language Models [54.51932175059004]
本稿では,大規模言語モデルのコード生成能力を高めるために,合成命令を生成するスケーラブルな手法を提案する。
提案したアルゴリズムは進化過程を模倣し、自己インストラクションを利用して限られた数の種子から多数の合成サンプルを生成する。
論文 参考訳(メタデータ) (2024-07-29T20:42:59Z) - Case2Code: Learning Inductive Reasoning with Synthetic Data [105.89741089673575]
プログラムの表現性と正確性を利用したtextbfCase2Code タスクを提案する。
まず、合成したCase2Codeタスクにおける代表LLMを評価し、LLMにおいてケース・ツー・コード誘導が困難であることを実証する。
実験結果から,このような帰納的学習は,Case2Codeの性能だけでなく,学習用LLMの各種符号化能力の向上にも寄与することがわかった。
論文 参考訳(メタデータ) (2024-07-17T11:35:00Z) - VHDL-Eval: A Framework for Evaluating Large Language Models in VHDL Code Generation [4.700008016247411]
本稿では,VHDLコード生成タスクの評価に特化して設計された包括的評価フレームワークを提案する。
このデータセットは、Verilog評価問題の集合をVHDLに翻訳し、公開されているVHDL問題を集約することにより、合計202の問題を発生させる。
生成したVHDL符号の機能的正当性を評価するために, 自己検証テストベンチのキュレートセットを利用する。
論文 参考訳(メタデータ) (2024-06-06T00:06:50Z) - HDLdebugger: Streamlining HDL debugging with Large Language Models [20.09481664579469]
チップ設計の分野では、ハードウェア記述言語(HDL)が重要な役割を果たしている。
大規模言語モデル(LLM)のソフトウェアコードの生成、完成、検査における強力な能力にもかかわらず、HDLデバッグの専門分野における利用は制限されている。
本稿では, 逆エンジニアリング手法によるHDLデータ生成, 検索拡張生成のための検索エンジン, 検索拡張LDMファインチューニング手法によるHDLgerというフレームワークを提案する。
HDLgerはHuaweiから提供されたHDLコードデータセットで実施した実験により,HDLgerが13件の切断に優れていることが判明した。
論文 参考訳(メタデータ) (2024-03-18T11:19:37Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。