論文の概要: AutoVCoder: A Systematic Framework for Automated Verilog Code Generation using LLMs
- arxiv url: http://arxiv.org/abs/2407.18333v1
- Date: Sun, 21 Jul 2024 16:42:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 01:25:56.738835
- Title: AutoVCoder: A Systematic Framework for Automated Verilog Code Generation using LLMs
- Title(参考訳): AutoVCoder: LLMを用いたVerilogコードの自動生成のためのシステムフレームワーク
- Authors: Mingzhe Gao, Jieru Zhao, Zhe Lin, Wenchao Ding, Xiaofeng Hou, Yu Feng, Chao Li, Minyi Guo,
- Abstract要約: 我々は,Verilogコード生成の正確性を大幅に向上するフレームワークであるAutoVCoderを開発した。
本フレームワークは,高品質なハードウェアデータセット生成手法を含む3つの新しい手法を統合する。
AutoVCoderは、BetterVと比較して、EvalMachineとEvalHumanのベンチマークで機能的正しさが0.5%と2.2%向上している。
- 参考スコア(独自算出の注目度): 27.179391677757565
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the use of large language models (LLMs) for software code generation, e.g., C/C++ and Python, has proven a great success. However, LLMs still suffer from low syntactic and functional correctness when it comes to the generation of register-transfer level (RTL) code, such as Verilog. To address this issue, in this paper, we develop AutoVCoder, a systematic open-source framework that significantly improves the LLMs' correctness of generating Verilog code and enhances the quality of its output at the same time. Our framework integrates three novel techniques, including a high-quality hardware dataset generation approach, a two-round LLM fine-tuning method and a domain-specific retrieval-augmented generation (RAG) mechanism. Experimental results demonstrate that AutoVCoder outperforms both industrial and academic LLMs in Verilog code generation. Specifically, AutoVCoder shows a 0.5% and 2.2% improvement in functional correctness on the EvalMachine and EvalHuman benchmarks compared with BetterV, and also achieves a 3.4% increase in syntax correctness and a 3.4% increase in functional correctness on the RTLLM benchmark compared with RTLCoder.
- Abstract(参考訳): 近年,C/C++やPythonなど,ソフトウェアコード生成に大規模言語モデル(LLM)を使用することで,大きな成功を収めている。
しかし、LLMはVerilogのようなレジスタ転送レベル(RTL)コードの生成に関して、構文的および機能的正確性に悩まされている。
本稿では,Verilog コード生成における LLM の正確性を大幅に向上し,出力品質を同時に向上するオープンソースフレームワークである AutoVCoder を開発した。
本フレームワークは,高品質なハードウェアデータセット生成手法,2ラウンドのLCMファインチューニング手法,ドメイン固有検索拡張生成(RAG)機構など,3つの新しい手法を統合する。
実験の結果,AutoVCoderはVerilogコード生成において,産業用LLMと学術用LLMの両方に優れていた。
具体的には、AutoVCoderは、EvalMachineとEvalHumanのベンチマークでBetterVと比較して、機能的正しさが0.5%と2.2%向上しており、RTLLMベンチマークでは構文的正しさが3.4%、機能的正しさが3.4%向上している。
関連論文リスト
- OriGen:Enhancing RTL Code Generation with Code-to-Code Augmentation and Self-Reflection [54.775409528658486]
OriGenは、セルフリフレクション機能と新しいデータセット拡張方法論を組み込んだ、完全なオープンソースフレームワークである。
このアプローチでは,オープンソースのRTLコードデータセットの品質向上のために,コード-コード拡張技術を採用している。
論文 参考訳(メタデータ) (2024-07-23T07:22:25Z) - CodeV: Empowering LLMs for Verilog Generation through Multi-Level Summarization [37.4446786461791]
本稿では,オープンソースの命令調整型Verilog生成用LLMであるCodeVを紹介する。
CodeVは以前のオープンソースSOTAを14.4%(VerilogEvalのBetterV)と11.3%(RTLCoder in RTLLM)で相対的に上回っている。
論文 参考訳(メタデータ) (2024-07-15T03:57:20Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF)は、さまざまな領域で大きな可能性を証明している。
本稿では,軽量 (1B パラメータ) LLM のコード生成能力を改善するための RLAIF フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-28T17:16:03Z) - Data is all you need: Finetuning LLMs for Chip Design via an Automated design-data augmentation framework [50.02710905062184]
本稿では,Verilog と EDA スクリプトに適合する高ボリュームかつ高品質な自然言語を生成する自動設計データ拡張フレームワークを提案する。
Verilog生成の精度は現在の最先端のオープンソースVerilog生成モデルを超え、同じベンチマークで58.8%から70.6%に増加した。
論文 参考訳(メタデータ) (2024-03-17T13:01:03Z) - Make Every Move Count: LLM-based High-Quality RTL Code Generation Using
MCTS [20.135906487081453]
本稿では,モンテカルロ木探索をベースとした自動トランスフォーマー復号アルゴリズムを提案する。
最先端のLLM(16ビット加算器)が生成する最大の設計のために,本技術は面積遅延生成物において31.8%の改善を達成できる。
論文 参考訳(メタデータ) (2024-02-05T18:47:04Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
コードの品質を調査した結果,より構造化され,読みやすくなれば,コード生成性能が向上することがわかった。
私たちは、これらの原則を使って既存のプログラムを変換する、新しいデータクリーニングパイプラインを構築します。
提案手法を2つのアルゴリズムコード生成ベンチマークで評価した結果,微調整のCodeLLaMa-7Bでは,元のデータセットの微調整に比べて最大30%性能が向上していることがわかった。
論文 参考訳(メタデータ) (2023-11-25T02:45:50Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
大規模言語モデル(LLM)は、コード生成において印象的なコンテキスト内学習(ICL)能力を示している。
コード生成のためのLAIL (LLM-Aware In-context Learning) という新しい学習ベース選択手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T06:12:58Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z) - Benchmarking Large Language Models for Automated Verilog RTL Code
Generation [21.747037230069854]
有用なVerilogを生成するために,大規模言語モデル(LLM)を特徴付ける。
機能解析のためのテストベンチと,Verilogコードの構文をテストするフローからなる評価フレームワークを構築した。
その結果,LLMの微調整結果は,構文的に正しいコードを生成する能力が高いことがわかった。
論文 参考訳(メタデータ) (2022-12-13T16:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。