論文の概要: Designing Secure AI-based Systems: a Multi-Vocal Literature Review
- arxiv url: http://arxiv.org/abs/2407.18584v1
- Date: Fri, 26 Jul 2024 08:04:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 14:00:25.400756
- Title: Designing Secure AI-based Systems: a Multi-Vocal Literature Review
- Title(参考訳): セキュアなAIベースのシステムの設計:多言語文献レビュー
- Authors: Simon Schneider, Ananya Saha, Emanuele Mezzi, Katja Tuma, Riccardo Scandariato,
- Abstract要約: 我々は,AIベースのシステム設計のための16のアーキテクチャセキュリティガイドラインを提示する。
このガイドラインは、AIベースのシステムのセキュアな開発について、実践者を支援することができる。
- 参考スコア(独自算出の注目度): 5.799668199535053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: AI-based systems leverage recent advances in the field of AI/ML by combining traditional software systems with AI components. Applications are increasingly being developed in this way. Software engineers can usually rely on a plethora of supporting information on how to use and implement any given technology. For AI-based systems, however, such information is scarce. Specifically, guidance on how to securely design the architecture is not available to the extent as for other systems. We present 16 architectural security guidelines for the design of AI-based systems that were curated via a multi-vocal literature review. The guidelines could support practitioners with actionable advice on the secure development of AI-based systems. Further, we mapped the guidelines to typical components of AI-based systems and observed a high coverage where 6 out of 8 generic components have at least one guideline associated to them.
- Abstract(参考訳): AIベースのシステムは、従来のソフトウェアシステムとAIコンポーネントを組み合わせることで、AI/ML分野における最近の進歩を活用する。
このような方法でアプリケーションの開発が進んでいる。
ソフトウェアエンジニアは通常、任意のテクノロジの使用方法や実装方法に関する多くのサポート情報に頼ることができます。
しかし、AIベースのシステムでは、そのような情報は少ない。
具体的には、アーキテクチャを安全に設計する方法に関するガイダンスは、他のシステムでは利用できない。
我々は,多言語文献レビューを通じてキュレートされたAIベースのシステム設計のための16のアーキテクチャセキュリティガイドラインを提示する。
このガイドラインは、AIベースのシステムのセキュアな開発について、実践者を支援することができる。
さらに、AIベースのシステムの典型的なコンポーネントにガイドラインをマッピングし、8つのジェネリックコンポーネントのうち6つに少なくとも1つのガイドラインが関連付けられている、高いカバレッジを観察した。
関連論文リスト
- PADTHAI-MM: A Principled Approach for Designing Trustable,
Human-centered AI systems using the MAST Methodology [5.38932801848643]
チェックリスト評価システムであるMultisource AI Scorecard Table (MAST)は、AI対応意思決定支援システムの設計と評価におけるこのギャップに対処する。
我々は,MAST手法を用いた信頼性の高い人間中心型AIシステムを設計するための原則的アプローチを提案する。
我々は,MAST誘導設計により信頼感が向上し,MAST基準が性能,プロセス,目的情報と結びつくことを示す。
論文 参考訳(メタデータ) (2024-01-24T23:15:44Z) - A Graphical Modeling Language for Artificial Intelligence Applications
in Automation Systems [69.50862982117127]
学際的なグラフィカルモデリング言語で、すべての分野に理解可能なシステムとして、AIアプリケーションのモデリングを可能にすることは、まだ存在しない。
本稿では,システムレベルでの自動化システムにおけるAIアプリケーションの一貫した,理解可能なモデリングを可能にするグラフィカルモデリング言語を提案する。
論文 参考訳(メタデータ) (2023-06-20T12:06:41Z) - Core and Periphery as Closed-System Precepts for Engineering General
Intelligence [62.997667081978825]
AIシステムの入力が出力から独立するかどうかは不明であり、従ってAIシステムが従来のコンポーネントとして扱われるかどうかは不明である。
本稿では, 工学的汎用知能は, コアと周辺と呼ばれる, 新たな汎用システム規範を必要とすることを示唆する。
論文 参考訳(メタデータ) (2022-08-04T18:20:25Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Responsible-AI-by-Design: a Pattern Collection for Designing Responsible
AI Systems [12.825892132103236]
責任あるAIのための多くの倫理規定、原則、ガイドラインが最近発行されている。
本稿では、システムレベルのガイダンスとして、責任あるAIシステムのアーキテクチャをどのように設計するかという、欠落した要素を1つ挙げる。
本稿では、AIシステムに組み込んだデザインパターンを製品として紹介し、責任あるAI設計に貢献する。
論文 参考訳(メタデータ) (2022-03-02T07:30:03Z) - Attacks, Defenses, And Tools: A Framework To Facilitate Robust AI/ML
Systems [2.5137859989323528]
ソフトウェアシステムは、人工知能(AI)と機械学習(ML)コンポーネントにますます依存している。
本稿では,AI対応システムに関連する攻撃や弱点を特徴付ける枠組みを提案する。
論文 参考訳(メタデータ) (2022-02-18T22:54:04Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Software Engineering for AI-Based Systems: A Survey [8.550158373713906]
AIベースのシステムの構築、運用、保守のためのソフトウェアエンジニアリングのアプローチに関する合成知識は限られています。
AIベースのシステムのためのSEは、2018年以来、研究の2/3以上が出版されている新興研究領域です。
AIベースのシステムの最も研究された特性は信頼性と安全性です。
論文 参考訳(メタデータ) (2021-05-05T11:22:08Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。