Parsimonious Universal Function Approximator for Elastic and Elasto-Plastic Cavity Expansion Problems
- URL: http://arxiv.org/abs/2407.19074v1
- Date: Mon, 8 Jul 2024 14:05:14 GMT
- Title: Parsimonious Universal Function Approximator for Elastic and Elasto-Plastic Cavity Expansion Problems
- Authors: Xiao-Xuan Chen, Pin Zhang, Hai-Sui Yu, Zhen-Yu Yin, Brian Sheil,
- Abstract summary: This study explores the potential of using a new solver, a physics-informed neural network (PINN), to calculate the stress field in an expanded cavity.
A novel parsimonious loss function is first proposed to balance the simplicity and accuracy of PINN.
The results indicate that the use of a parsimonious prior information-based loss function is highly beneficial to deriving the approximate solutions of complex PDEs.
- Score: 1.1778980923869893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cavity expansion is a canonical problem in geotechnics, which can be described by partial differential equations (PDEs) and ordinary differential equations (ODEs). This study explores the potential of using a new solver, a physics-informed neural network (PINN), to calculate the stress field in an expanded cavity in the elastic and elasto-plastic regimes. Whilst PINNs have emerged as an effective universal function approximator for deriving the solutions of a wide range of governing PDEs/ODEs, their ability to solve elasto-plastic problems remains uncertain. A novel parsimonious loss function is first proposed to balance the simplicity and accuracy of PINN. The proposed method is applied to diverse material behaviours in the cavity expansion problem including isotropic, anisotropic elastic media, and elastic-perfectly plastic media with Tresca and Mohr-Coulomb yield criteria. The results indicate that the use of a parsimonious prior information-based loss function is highly beneficial to deriving the approximate solutions of complex PDEs with high accuracy. The present method allows for accurate derivation of solutions for both elastic and plastic mechanical responses of an expanded cavity. It also provides insights into how PINNs can be further advanced to solve more complex problems in geotechnical practice.
Related papers
- Advancing Generalization in PINNs through Latent-Space Representations [71.86401914779019]
Physics-informed neural networks (PINNs) have made significant strides in modeling dynamical systems governed by partial differential equations (PDEs)
We propose PIDO, a novel physics-informed neural PDE solver designed to generalize effectively across diverse PDE configurations.
We validate PIDO on a range of benchmarks, including 1D combined equations and 2D Navier-Stokes equations.
arXiv Detail & Related papers (2024-11-28T13:16:20Z) - Separable Physics-Informed Neural Networks for the solution of
elasticity problems [0.0]
A method for solving elasticity problems based on separable physics-informed neural networks (SPINN) in conjunction with the deep energy method (DEM) is presented.
Numerical experiments have been carried out for a number of problems showing that this method has a significantly higher convergence rate and accuracy than the vanilla physics-informed neural networks (PINN) and even SPINN.
arXiv Detail & Related papers (2024-01-24T14:34:59Z) - Solving Forward and Inverse Problems of Contact Mechanics using
Physics-Informed Neural Networks [0.0]
We deploy PINNs in a mixed-variable formulation enhanced by output transformation to enforce hard and soft constraints.
We show that PINNs can serve as pure partial equation (PDE) solver, as data-enhanced forward model, and as fast-to-evaluate surrogate model.
arXiv Detail & Related papers (2023-08-24T11:31:24Z) - A Deep Learning Framework for Solving Hyperbolic Partial Differential
Equations: Part I [0.0]
This research focuses on the development of a physics informed deep learning framework to approximate solutions to nonlinear PDEs.
The framework naturally handles imposition of boundary conditions (Neumann/Dirichlet), entropy conditions, and regularity requirements.
arXiv Detail & Related papers (2023-07-09T08:27:17Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
Physics-informed neural networks (PINNs) are capable of finding the solution for a given boundary value problem.
We employ several ideas from the finite element method (FEM) to enhance the performance of existing PINNs in engineering problems.
arXiv Detail & Related papers (2022-06-27T08:18:08Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
Recently, physics informed neural networks have successfully been applied to a broad variety of problems in applied mathematics and engineering.
Due to the global approximation, physics informed neural networks have difficulties in displaying localized effects and strong non-linear solutions by optimization.
It is shown, that the domain decomposition approach is able to accurately resolve nonlinear stress, displacement and energy fields in heterogeneous microstructures obtained from real-world $mu$CT-scans.
arXiv Detail & Related papers (2021-10-14T14:05:19Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
We explore an application of the Physics Informed Neural Networks (PINNs) in conjunction with Airy stress functions and Fourier series.
We find that enriching feature space using Airy stress functions can significantly improve the accuracy of PINN solutions for biharmonic PDEs.
arXiv Detail & Related papers (2021-08-16T17:19:50Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
We introduce dNNsolve, that makes use of dual Neural Networks to solve ODEs/PDEs.
We show that dNNsolve is capable of solving a broad range of ODEs/PDEs in 1, 2 and 3 spacetime dimensions.
arXiv Detail & Related papers (2021-03-15T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.