論文の概要: Confidence Estimation for Automatic Detection of Depression and Alzheimer's Disease Based on Clinical Interviews
- arxiv url: http://arxiv.org/abs/2407.19984v1
- Date: Mon, 29 Jul 2024 13:18:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 13:56:27.227704
- Title: Confidence Estimation for Automatic Detection of Depression and Alzheimer's Disease Based on Clinical Interviews
- Title(参考訳): 臨床面接によるうつ病・アルツハイマー病自動診断の信頼性評価
- Authors: Wen Wu, Chao Zhang, Philip C. Woodland,
- Abstract要約: 本稿では,アルツハイマー病(AD)とうつ病の自動診断のための信頼性評価について,臨床面接による検討を行った。
動的ディリクレ事前分布を用いて予測分布の2次確率をモデル化する新しいベイズ的手法を提案する。
- 参考スコア(独自算出の注目度): 14.626563022137875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech-based automatic detection of Alzheimer's disease (AD) and depression has attracted increased attention. Confidence estimation is crucial for a trust-worthy automatic diagnostic system which informs the clinician about the confidence of model predictions and helps reduce the risk of misdiagnosis. This paper investigates confidence estimation for automatic detection of AD and depression based on clinical interviews. A novel Bayesian approach is proposed which uses a dynamic Dirichlet prior distribution to model the second-order probability of the predictive distribution. Experimental results on the publicly available ADReSS and DAIC-WOZ datasets demonstrate that the proposed method outperforms a range of baselines for both classification accuracy and confidence estimation.
- Abstract(参考訳): 音声によるアルツハイマー病(AD)とうつ病の自動検出が注目されている。
信頼度評価は, モデル予測の信頼性を臨床医に知らせ, 誤診リスクの低減を支援する, 信頼に値する自動診断システムにとって極めて重要である。
本稿では,臨床面接に基づくADとうつ病の自動検出のための信頼度推定について検討する。
動的ディリクレ事前分布を用いて予測分布の2次確率をモデル化する新しいベイズ的手法を提案する。
公開されているADReSSおよびDAIC-WOZデータセットによる実験結果から,提案手法は分類精度と信頼性推定の両方において,幅広いベースラインより優れていることが示された。
関連論文リスト
- Trust-informed Decision-Making Through An Uncertainty-Aware Stacked Neural Networks Framework: Case Study in COVID-19 Classification [10.265080819932614]
本研究は、放射線画像から新型コロナウイルスの信頼できる分類のための、不確実性を考慮した重畳ニューラルネットワークモデルを提案する。
このモデルは、確実な正確な予測を正確に識別することに焦点を当て、不確実性を考慮したモデリングにおける重要なギャップに対処する。
このアーキテクチャはモンテカルロのドロップアウトやアンサンブル技術を含む不確実な定量化手法を統合し、予測信頼性を高める。
論文 参考訳(メタデータ) (2024-09-19T04:20:12Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
多くの信頼度推定法は誤分類誤りを検出するのに有害である。
本稿では, 最先端の故障予測性能を示す平坦な最小値を求めることにより, 信頼性ギャップを拡大することを提案する。
論文 参考訳(メタデータ) (2024-03-05T11:44:14Z) - Uncertainty Quantification on Clinical Trial Outcome Prediction [37.238845949535616]
本稿では,不確実性の定量化を臨床治験結果の予測に取り入れることを提案する。
私たちの主な目標は、ニュアンスドの違いを識別するモデルの能力を強化することです。
我々は目的を達成するために選択的な分類手法を採用した。
論文 参考訳(メタデータ) (2024-01-07T13:48:05Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
本稿では,医療画像セグメンテーションネットワークにシームレスに統合可能な,実装が容易な基礎モデルであるDEviSを紹介する。
主観的論理理論を利用して、医用画像分割の問題に対する確率と不確実性を明示的にモデル化する。
DeviSには不確実性を考慮したフィルタリングモジュールが組み込まれている。
論文 参考訳(メタデータ) (2023-01-01T05:02:46Z) - Uncertainty estimations methods for a deep learning model to aid in
clinical decision-making -- a clinician's perspective [0.0]
深層学習にインスパイアされた不確実性推定技術はいくつかあるが、医療データセットに実装されているものはほとんどない。
我々は,不確かさを推定するために,ドロップアウト変動推論(DO),テスト時間拡張(TTA),共形予測,単一決定論的手法を比較した。
臨床実習にモデルを組み込む前に,複数の推定手法を評価することが重要である。
論文 参考訳(メタデータ) (2022-10-02T17:54:54Z) - Uncertainty-Informed Deep Learning Models Enable High-Confidence
Predictions for Digital Histopathology [40.96261204117952]
肺腺癌と扁平上皮癌を鑑別するモデルを訓練し,高い信頼度予測がUQなしで予測を上回ることを示す。
非肺癌コホートに対する腺癌と扁平上皮癌との高信頼度予測を精度良く行うことで, 領域シフトの設定においてUQ閾値の信頼性が保たれることを示す。
論文 参考訳(メタデータ) (2022-04-09T17:35:37Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
臨床テキストからのアウトカム予測は、医師が潜在的なリスクを見落としないようにする。
退院時の診断,手術手順,院内死亡率,長期予測は4つの一般的な結果予測対象である。
複数の公開資料から得られた患者結果に関する知識を統合するために,臨床結果の事前学習を提案する。
論文 参考訳(メタデータ) (2021-02-08T10:26:44Z) - An evaluation of word-level confidence estimation for end-to-end
automatic speech recognition [70.61280174637913]
エンドツーエンド自動音声認識(ASR)における信頼度推定の検討
4つのよく知られた音声データセットにおける信頼度手法の広範なベンチマークを提供する。
以上の結果から,ロジットを学習温度でスケーリングすることで,強いベースラインが得られることが示唆された。
論文 参考訳(メタデータ) (2021-01-14T09:51:59Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Diagnostic Uncertainty Calibration: Towards Reliable Machine Predictions
in Medical Domain [20.237847764018138]
本稿では,ラベルの不確実性の存在下でのクラス確率推定(CPE)の評価フレームワークを提案する。
また,レータ間不一致を含む高次統計量の評価指標を定式化した。
提案手法は,不確実性推定の信頼性を著しく向上させることを示す。
論文 参考訳(メタデータ) (2020-07-03T12:54:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。