Benchmarking Histopathology Foundation Models for Ovarian Cancer Bevacizumab Treatment Response Prediction from Whole Slide Images
- URL: http://arxiv.org/abs/2407.20596v1
- Date: Tue, 30 Jul 2024 07:15:39 GMT
- Title: Benchmarking Histopathology Foundation Models for Ovarian Cancer Bevacizumab Treatment Response Prediction from Whole Slide Images
- Authors: Mayur Mallya, Ali Khajegili Mirabadi, Hossein Farahani, Ali Bashashati,
- Abstract summary: We leverage the latest histopathology foundation models trained on large-scale whole slide image (WSI) to extract ovarian tumor tissue features for predicting bevacizumab response.
Our survival models are able to stratify high- and low-risk cases with statistical significance.
- Score: 1.4999444543328293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bevacizumab is a widely studied targeted therapeutic drug used in conjunction with standard chemotherapy for the treatment of recurrent ovarian cancer. While its administration has shown to increase the progression-free survival (PFS) in patients with advanced stage ovarian cancer, the lack of identifiable biomarkers for predicting patient response has been a major roadblock in its effective adoption towards personalized medicine. In this work, we leverage the latest histopathology foundation models trained on large-scale whole slide image (WSI) datasets to extract ovarian tumor tissue features for predicting bevacizumab response from WSIs. Our extensive experiments across a combination of different histopathology foundation models and multiple instance learning (MIL) strategies demonstrate capability of these large models in predicting bevacizumab response in ovarian cancer patients with the best models achieving an AUC score of 0.86 and an accuracy score of 72.5%. Furthermore, our survival models are able to stratify high- and low-risk cases with statistical significance (p < 0.05) even among the patients with the aggressive subtype of high-grade serous ovarian carcinoma. This work highlights the utility of histopathology foundation models for the task of ovarian bevacizumab response prediction from WSIs. The high-attention regions of the WSIs highlighted by these models not only aid the model explainability but also serve as promising imaging biomarkers for treatment prognosis.
Related papers
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
We propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures.
We empirically validate emphTopoTxR using the VICTRE phantom breast dataset.
Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na"ive imaging.
arXiv Detail & Related papers (2024-11-05T19:35:10Z) - Histopathology Based AI Model Predicts Anti-Angiogenic Therapy Response in Renal Cancer Clinical Trial [0.6087644423424302]
We present a novel deep learning (DL) approach to predict the Angioscore from ubiquitous histopathology slides.
Our model produces a visual vascular network which is the basis of the model's prediction.
Our approach offers insights into angiogenesis biology and AA treatment response.
arXiv Detail & Related papers (2024-05-28T16:21:20Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
Neoadjuvant chemotherapy has recently gained popularity as a promising treatment strategy for breast cancer.
The current process to recommend neoadjuvant chemotherapy relies on the subjective evaluation of medical experts.
This research investigates the application of optimized CDI$s$ to enhance breast cancer pathologic complete response prediction.
arXiv Detail & Related papers (2024-05-13T15:40:56Z) - Deep Learning-based Prediction of Breast Cancer Tumor and Immune Phenotypes from Histopathology [3.9270231212340354]
There is not a widely available method to reproducibly measure tumor and immune phenotypes for each patient's tumor.
We applied multiple instance learning (MIL) algorithms to assess activity of ten biologically relevant pathways from the hematoxylin and eosin slide of primary breast tumors.
Our trained models recognize biologically relevant spatial patterns of cell sub-populations from H&E.
arXiv Detail & Related papers (2024-04-25T08:15:37Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
The aim of this study was to develop a multi-model approach integrating the analysis of whole slide images and clinicopathologic data to predict associated breast cancer recurrence risks.
The proposed novel methodology uses convolutional neural networks for feature extraction and vision transformers for contextual aggregation.
arXiv Detail & Related papers (2024-01-28T23:33:56Z) - Predicting Ovarian Cancer Treatment Response in Histopathology using
Hierarchical Vision Transformers and Multiple Instance Learning [2.0661578265672094]
Deep learning can be used to predict whether a course of treatment could contribute to remission or prevent disease progression in ovarian cancer patients.
Our approach used a pretrained Hierarchical Image Pyramid Transformer (HIPT) to extract region-level features and an attention-based multiple instance learning (ABMIL) model to aggregate features and classify whole slides.
It is not yet clear whether ovarian cancer WSIs contain information that can be used to accurately predict treatment response, with further validation using larger, higher-quality datasets required.
arXiv Detail & Related papers (2023-10-19T16:16:29Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - EOCSA: Predicting Prognosis of Epithelial Ovarian Cancer with Whole
Slide Histopathological Images [22.227676868758195]
Ovarian cancer is one of the most serious cancers that threaten women around the world.
In this study, we designed a deep framework named EOCSA which analyzes the prognosis of EOC patients based on pathological whole slide images (WSIs)
The experimental results demonstrate that our proposed framework has achieved state-of-the-art performance of 0.980 C-index.
arXiv Detail & Related papers (2022-10-11T08:40:40Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
Gastric endoscopic screening is an effective way to decide appropriate gastric cancer (GC) treatment at an early stage, reducing GC-associated mortality rate.
We propose a practical AI system that enables five subclassifications of GC pathology, which can be directly matched to general GC treatment guidance.
arXiv Detail & Related papers (2022-02-17T08:33:52Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.