論文の概要: Persistent Sampling: Unleashing the Potential of Sequential Monte Carlo
- arxiv url: http://arxiv.org/abs/2407.20722v1
- Date: Tue, 30 Jul 2024 10:34:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 17:30:03.465492
- Title: Persistent Sampling: Unleashing the Potential of Sequential Monte Carlo
- Title(参考訳): 永続サンプリング: シークエンシャルなモンテカルロの可能性
- Authors: Minas Karamanis, Uroš Seljak,
- Abstract要約: 逐次モンテカルロ法の拡張であるパーシステンスサンプリング(PS)を導入する。
PSは、繰り返しに分散する粒子の増大し重み付けされたアンサンブルを生成する。
PSは標準手法を一貫して上回り、後部モーメント推定において低い2乗バイアスを達成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Sequential Monte Carlo (SMC) methods are powerful tools for Bayesian inference but suffer from requiring many particles for accurate estimates, leading to high computational costs. We introduce persistent sampling (PS), an extension of SMC that mitigates this issue by allowing particles from previous iterations to persist. This generates a growing, weighted ensemble of particles distributed across iterations. In each iteration, PS utilizes multiple importance sampling and resampling from the mixture of all previous distributions to produce the next generation of particles. This addresses particle impoverishment and mode collapse, resulting in more accurate posterior approximations. Furthermore, this approach provides lower-variance marginal likelihood estimates for model comparison. Additionally, the persistent particles improve transition kernel adaptation for efficient exploration. Experiments on complex distributions show that PS consistently outperforms standard methods, achieving lower squared bias in posterior moment estimation and significantly reduced marginal likelihood errors, all at a lower computational cost. PS offers a robust, efficient, and scalable framework for Bayesian inference.
- Abstract(参考訳): 連続モンテカルロ法(SMC)はベイズ推定の強力なツールであるが、正確な推定のために多くの粒子を必要とすることに悩まされており、計算コストが高い。
SMCの拡張であるパーシステンス・サンプリング(PS)を導入し、従来の繰り返しからの粒子を持続させることによりこの問題を緩和する。
これにより、繰り返しにまたがる粒子の集合が成長し、重み付けされる。
各イテレーションでは、PSは以前の全ての分布の混合から複数の重要サンプリングと再サンプリングを使用して、次の世代の粒子を生成する。
これは粒子不足とモード崩壊に対処し、より正確な後部近似をもたらす。
さらに、本手法はモデル比較のための低分散限界推定値を提供する。
さらに、永続粒子は効率的な探索のために遷移カーネル適応を改善する。
複雑な分布の実験では、PSは標準手法より一貫して優れており、後部モーメント推定において低い2乗バイアスを達成し、いずれも計算コストの低い限界誤差を著しく低減している。
PSはベイズ推論のための堅牢で効率的でスケーラブルなフレームワークを提供する。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
ポテンシャル関数が支配する分布からサンプリングする問題を考察する。
本研究は, 決定論的な楽譜に基づくMCMC法を提案し, 粒子に対する決定論的進化をもたらす。
論文 参考訳(メタデータ) (2023-08-28T23:51:33Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Plug-and-Play split Gibbs sampler: embedding deep generative priors in
Bayesian inference [12.91637880428221]
本稿では, 後方分布から効率的にサンプリングするために, 可変分割を利用したプラグアンドプレイサンプリングアルゴリズムを提案する。
後方サンプリングの課題を2つの単純なサンプリング問題に分割する。
その性能は最近の最先端の最適化とサンプリング手法と比較される。
論文 参考訳(メタデータ) (2023-04-21T17:17:51Z) - Bayesian Pseudo-Coresets via Contrastive Divergence [5.479797073162603]
対照的な発散を利用して擬似コアセットを構築するための新しい手法を提案する。
これは擬似コアセット構築プロセスにおける近似の必要性を排除する。
複数のデータセットに対して広範な実験を行い、既存のBPC技術よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-20T17:13:50Z) - Preconditioned Score-based Generative Models [49.88840603798831]
直感的な加速度法はサンプリングの繰り返しを減らし、しかしながら重大な性能劣化を引き起こす。
本稿では,行列プレコンディショニングを利用したモデル非依存型bfem事前条件拡散サンプリング(PDS)手法を提案する。
PDSは、バニラSGMのサンプリングプロセスを限界余剰計算コストで変更し、モデルの再訓練を行わない。
論文 参考訳(メタデータ) (2023-02-13T16:30:53Z) - Post-Processing Temporal Action Detection [134.26292288193298]
時間的行動検出(TAD)法は、通常、入力された可変長のビデオを固定長のスニペット表現シーケンスに変換する際に、前処理のステップを踏む。
この前処理ステップは、ビデオを時間的にダウンサンプリングし、推論の解像度を低減し、元の時間分解における検出性能を阻害する。
モデルの再設計や再学習を伴わない新しいモデル非依存のポストプロセッシング手法を提案する。
論文 参考訳(メタデータ) (2022-11-27T19:50:37Z) - Convergence for score-based generative modeling with polynomial
complexity [9.953088581242845]
我々は、Scoreベースの生成モデルの背後にあるコアメカニックに対する最初の収束保証を証明した。
以前の作品と比較すると、時間的に指数関数的に増加するエラーや、次元の呪いに苦しむエラーは発生しない。
予測器・相関器はどちらの部分のみを使用するよりも収束性が高いことを示す。
論文 参考訳(メタデータ) (2022-06-13T14:57:35Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
粒子フィルタリングは複素系の優れた非線形推定を計算するために用いられる。
粒子フィルタは様々なシナリオにおいて良好な推定値が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:58:34Z) - Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
Multimodal Posteriors [8.11978827493967]
MCMCの並列実行, 変動型, モードベースの推論を用いて, できるだけ多くのモードをヒットさせる手法を提案する。
重み付き推論プロセスが真のデータを近似する例と理論的整合性を示す。
いくつかのモデルファミリで実践的な実装を示す。
論文 参考訳(メタデータ) (2020-06-22T15:26:59Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。