Architectural Influence on Variational Quantum Circuits in Multi-Agent Reinforcement Learning: Evolutionary Strategies for Optimization
- URL: http://arxiv.org/abs/2407.20739v1
- Date: Tue, 30 Jul 2024 11:16:25 GMT
- Title: Architectural Influence on Variational Quantum Circuits in Multi-Agent Reinforcement Learning: Evolutionary Strategies for Optimization
- Authors: Michael Kölle, Karola Schneider, Sabrina Egger, Felix Topp, Thomy Phan, Philipp Altmann, Jonas Nüßlein, Claudia Linnhoff-Popien,
- Abstract summary: We propose a Gate-Based, a Layer-Based, and a Prototype-Based concept to mutate and recombine quantum circuits.
Our results show the best performance for mutation-only strategies and the Gate-Based approach.
In particular, we observe a significantly better score, higher total and own collected coins, as well as a superior own coin rate for the best agent when evaluated in the Coin Game environment.
- Score: 5.7918970571149835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, Multi-Agent Reinforcement Learning (MARL) has found application in numerous areas of science and industry, such as autonomous driving, telecommunications, and global health. Nevertheless, MARL suffers from, for instance, an exponential growth of dimensions. Inherent properties of quantum mechanics help to overcome these limitations, e.g., by significantly reducing the number of trainable parameters. Previous studies have developed an approach that uses gradient-free quantum Reinforcement Learning and evolutionary optimization for variational quantum circuits (VQCs) to reduce the trainable parameters and avoid barren plateaus as well as vanishing gradients. This leads to a significantly better performance of VQCs compared to classical neural networks with a similar number of trainable parameters and a reduction in the number of parameters by more than 97 \% compared to similarly good neural networks. We extend an approach of K\"olle et al. by proposing a Gate-Based, a Layer-Based, and a Prototype-Based concept to mutate and recombine VQCs. Our results show the best performance for mutation-only strategies and the Gate-Based approach. In particular, we observe a significantly better score, higher total and own collected coins, as well as a superior own coin rate for the best agent when evaluated in the Coin Game environment.
Related papers
- Q-MAML: Quantum Model-Agnostic Meta-Learning for Variational Quantum Algorithms [4.525216077859531]
We introduce a new framework for optimizing parameterized quantum circuits (PQCs) that employs a classical, inspired by Model-Agnostic Meta-Learning (MAML) technique.
Our framework features a classical neural network, called Learner, which interacts with a PQC using the output of Learner as an initial parameter.
In the adaptation phase, the framework requires only a few PQC updates to converge to a more accurate value, while the learner remains unchanged.
arXiv Detail & Related papers (2025-01-10T12:07:00Z) - On the Convergence of DP-SGD with Adaptive Clipping [56.24689348875711]
Gradient Descent with gradient clipping is a powerful technique for enabling differentially private optimization.
This paper provides the first comprehensive convergence analysis of SGD with quantile clipping (QC-SGD)
We show how QC-SGD suffers from a bias problem similar to constant-threshold clipped SGD but can be mitigated through a carefully designed quantile and step size schedule.
arXiv Detail & Related papers (2024-12-27T20:29:47Z) - Regression and Classification with Single-Qubit Quantum Neural Networks [0.0]
We use a resource-efficient and scalable Single-Qubit Quantum Neural Network (SQQNN) for both regression and classification tasks.
For classification, we introduce a novel training method inspired by the Taylor series, which can efficiently find a global minimum in a single step.
The SQQNN exhibits virtually error-free and strong performance in regression and classification tasks, including the MNIST dataset.
arXiv Detail & Related papers (2024-12-12T17:35:36Z) - Enhancing Variational Quantum Circuit Training: An Improved Neural Network Approach for Barren Plateau Mitigation [0.0]
variational quantum algorithms (VQAs) are among the most promising algorithms in near-term quantum computing.
They iteratively update circuit parameters to optimize a cost function.
The training of variational quantum circuits (VQCs) is susceptible to a phenomenon known as barren plateaus (BPs)
arXiv Detail & Related papers (2024-11-14T06:43:37Z) - Compact Multi-Threshold Quantum Information Driven Ansatz For Strongly Interactive Lattice Spin Models [0.0]
We introduce a systematic procedure for ansatz building based on approximate Quantum Mutual Information (QMI)
Our approach generates a layered-structured ansatz, where each layer's qubit pairs are selected based on their QMI values, resulting in more efficient state preparation and optimization routines.
Our results show that the Multi-QIDA method reduces the computational complexity while maintaining high precision, making it a promising tool for quantum simulations in lattice spin models.
arXiv Detail & Related papers (2024-08-05T17:07:08Z) - Multi-Agent Quantum Reinforcement Learning using Evolutionary Optimization [6.3443033704469]
We build upon an existing approach for gradient free Quantum Reinforcement Learning and propose three genetic variations with Variational Quantum Circuits for Multi-Agent Reinforcement Learning.
We show that our Variational Quantum Circuit approaches perform significantly better compared to a neural network with a similar amount of trainable parameters.
arXiv Detail & Related papers (2023-11-09T17:45:32Z) - Domain Generalization Guided by Gradient Signal to Noise Ratio of
Parameters [69.24377241408851]
Overfitting to the source domain is a common issue in gradient-based training of deep neural networks.
We propose to base the selection on gradient-signal-to-noise ratio (GSNR) of network's parameters.
arXiv Detail & Related papers (2023-10-11T10:21:34Z) - Weight Re-Mapping for Variational Quantum Algorithms [54.854986762287126]
We introduce the concept of weight re-mapping for variational quantum circuits (VQCs)
We employ seven distinct weight re-mapping functions to assess their impact on eight classification datasets.
Our results indicate that weight re-mapping can enhance the convergence speed of the VQC.
arXiv Detail & Related papers (2023-06-09T09:42:21Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Adaptive Gradient Method with Resilience and Momentum [120.83046824742455]
We propose an Adaptive Gradient Method with Resilience and Momentum (AdaRem)
AdaRem adjusts the parameter-wise learning rate according to whether the direction of one parameter changes in the past is aligned with the direction of the current gradient.
Our method outperforms previous adaptive learning rate-based algorithms in terms of the training speed and the test error.
arXiv Detail & Related papers (2020-10-21T14:49:00Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.