論文の概要: MambaCapsule: Towards Transparent Cardiac Disease Diagnosis with Electrocardiography Using Mamba Capsule Network
- arxiv url: http://arxiv.org/abs/2407.20893v1
- Date: Tue, 30 Jul 2024 15:12:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-31 16:50:19.887663
- Title: MambaCapsule: Towards Transparent Cardiac Disease Diagnosis with Electrocardiography Using Mamba Capsule Network
- Title(参考訳): Mamba Capsule: Mamba Capsule Network を用いた心電図による透過性心疾患診断に向けて
- Authors: Yinlong Xu, Xiaoqiang Liu, Zitai Kong, Yixuan Wu, Yue Wang, Yingzhou Lu, Honghao Gao, Jian Wu, Hongxia Xu,
- Abstract要約: 本稿では,ECG不整脈分類のためのディープニューラルネットワークであるMambaCapsuleを紹介する。
MambaCapsuleはテストセットでそれぞれ99.54%と99.59%の精度を達成した。
- 参考スコア(独自算出の注目度): 16.562266471455672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiac arrhythmia, a condition characterized by irregular heartbeats, often serves as an early indication of various heart ailments. With the advent of deep learning, numerous innovative models have been introduced for diagnosing arrhythmias using Electrocardiogram (ECG) signals. However, recent studies solely focus on the performance of models, neglecting the interpretation of their results. This leads to a considerable lack of transparency, posing a significant risk in the actual diagnostic process. To solve this problem, this paper introduces MambaCapsule, a deep neural networks for ECG arrhythmias classification, which increases the explainability of the model while enhancing the accuracy.Our model utilizes Mamba for feature extraction and Capsule networks for prediction, providing not only a confidence score but also signal features. Akin to the processing mechanism of human brain, the model learns signal features and their relationship between them by reconstructing ECG signals in the predicted selection. The model evaluation was conducted on MIT-BIH and PTB dataset, following the AAMI standard. MambaCapsule has achieved a total accuracy of 99.54% and 99.59% on the test sets respectively. These results demonstrate the promising performance of under the standard test protocol.
- Abstract(参考訳): 心臓不整脈は不整脈を特徴とする疾患であり、様々な心疾患の早期の徴候として用いられることが多い。
深層学習の出現に伴い、心電図(ECG)信号を用いて不整脈を診断するための多くの革新的なモデルが導入された。
しかし、近年の研究は、結果の解釈を無視して、モデルの性能にのみ焦点をあてている。
これは透明性の欠如を招き、実際の診断プロセスに重大なリスクをもたらす。
そこで本研究では,ECG不整脈分類のための深層ニューラルネットワークであるMamba Capsuleを導入し,精度を高めつつモデルの説明可能性を高めるとともに,特徴抽出にMambaを用い,予測にCapsuleネットワークを用い,信頼性スコアだけでなく信号特徴も提供する。
ヒト脳の処理機構と同様に、予測された選択においてECG信号を再構成することにより、モデルが信号の特徴とその関係を学習する。
AAMI標準に従って,MIT-BIHおよびTBデータセットを用いてモデル評価を行った。
MambaCapsuleはテストセットでそれぞれ99.54%と99.59%の精度を達成した。
これらの結果は,標準テストプロトコル下での有望な性能を示すものである。
関連論文リスト
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
そこで本研究では,周期型ECG表現学習手法を提案する。
心房細動患者の心電図ではRR間隔の不規則性やP波の欠如を考慮し, 経時的および経時的表現のための特定の事前訓練タスクを開発する。
本手法は,発作/持続性心房細動検出のためのBTCHデータセット,textiti., 0.953/0.996におけるAUCの顕著な性能を示す。
論文 参考訳(メタデータ) (2024-10-08T10:03:52Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - ECG Arrhythmia Detection Using Disease-specific Attention-based Deep Learning Model [0.0]
短絡心電図記録から不整脈を検出するための病気特異的注意ベースディープラーニングモデル(DANet)を提案する。
新しいアイデアは、既存のディープニューラルネットワークにソフトコーディングまたはハードコーディングの波形拡張モジュールを導入することである。
DANetをソフトコーディングするためには、自己教師付き事前学習と2段階教師付きトレーニングを組み合わせた学習フレームワークも開発する。
論文 参考訳(メタデータ) (2024-07-25T13:27:10Z) - Improving Diffusion Models for ECG Imputation with an Augmented Template
Prior [43.6099225257178]
ノイズと品質の悪い録音は、モバイルヘルスシステムを使って収集された信号にとって大きな問題である。
近年の研究では、確率的時系列モデルによるECGの欠落値の計算が検討されている。
本稿では,様々な健康状態の事前情報として,テンプレート誘導型拡散確率モデル(DDPM)PulseDiffを提案する。
論文 参考訳(メタデータ) (2023-10-24T11:34:15Z) - ElectroCardioGuard: Preventing Patient Misidentification in
Electrocardiogram Databases through Neural Networks [0.0]
臨床的には, 誤診患者に対する心電図記録の割り当ては不注意に発生することがある。
本稿では,2つの心電図が同一患者に由来するかどうかを判定する,小型で効率的な神経ネットワークモデルを提案する。
PTB-XL 上でのギャラリープローブによる患者識別において、760 倍のパラメータを用いて最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-06-09T18:53:25Z) - A lightweight hybrid CNN-LSTM model for ECG-based arrhythmia detection [0.0]
本稿では,8種類の心不整脈と正常リズムの高精度検出のための光深度学習手法を提案する。
各種心電図信号を用いた不整脈分類モデルの試作と試験を行った。
論文 参考訳(メタデータ) (2022-08-29T05:01:04Z) - Machine Learning-based Efficient Ventricular Tachycardia Detection Model
of ECG Signal [0.0]
心不全の一次診断と解析において、心電図信号は重要な役割を果たす。
本稿では,ノイズフィルタを用いた心室頻拍不整脈の予測モデル,心電図の特徴セット,機械学習に基づく分類モデルを提案する。
論文 参考訳(メタデータ) (2021-12-24T05:56:09Z) - Supraventricular Tachycardia Detection and Classification Model of ECG
signal Using Machine Learning [0.0]
心電図(ECG)信号の研究は心疾患の診断に不可欠である。
本研究は,雑音のフィルタリングを含む数段階からなる上室性不整脈予測モデルを提案する。
我々は,異なるタイプの上室頻拍を分類できる機械学習に基づく分類モデルを開発した。
論文 参考訳(メタデータ) (2021-12-24T05:48:26Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
本研究の目的は,LGE-MRIを用いた心筋境界領域の深部学習モデルに基づく正確な自動セグメンテーション法を開発することである。
合計320回の試験(平均6回の試験)と28回の試験が行われた。
ベーススライスとミドルスライスにおけるアンサンブルモデルの性能解析は, サーバ内調査と同等であり, アトピーススライスではわずかに低かった。
論文 参考訳(メタデータ) (2020-05-27T20:44:38Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。