An iterative transversal CNOT decoder
- URL: http://arxiv.org/abs/2407.20976v2
- Date: Fri, 30 Aug 2024 16:38:45 GMT
- Title: An iterative transversal CNOT decoder
- Authors: Kwok Ho Wan, Mark Webber, Austin G. Fowler, Winfried K. Hensinger,
- Abstract summary: Modern platforms for qubit candidates, such as trapped ions or neutral atoms, allow long range connectivity between distant physical qubits through shuttling.
This opens up an avenue for iterative logical CNOT gates between distant logical qubits, whereby physical CNOT gates are performed between each corresponding physical qubit on the control and target logical qubits.
However, the CNOT can propagate errors from one logical qubit to another, leading to correlated errors between logical qubits.
We have developed a multi-pass decoder that decodes each logical qubit separately to deal with this correlated error.
- Score: 0.3270311586730471
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern platforms for potential qubit candidates, such as trapped ions or neutral atoms, allow long range connectivity between distant physical qubits through shuttling. This opens up an avenue for transversal logical CNOT gates between distant logical qubits, whereby physical CNOT gates are performed between each corresponding physical qubit on the control and target logical qubits. However, the transversal CNOT can propagate errors from one logical qubit to another, leading to correlated errors between logical qubits. We have developed a multi-pass iterative decoder that decodes each logical qubit separately to deal with this correlated error. We show that under circuit-level noise and only $\mathcal{O}(1)$ code cycles, a threshold can still persist, and the logical error rate will not be significantly degraded, matching the sub-threshold logical error rate scaling of $p^{\lfloor\frac{d}{2}\rfloor}$ for a distance $d$ rotated surface code.
Related papers
- Compare the Pair: Rotated vs. Unrotated Surface Codes at Equal Logical Error Rates [0.0]
Quantum computers will require resource-efficient error-correcting codes.
Instead of distance, a more useful qubit-saving metric would be based on logical error rates.
We find the well-below-threshold scaling of logical to physical error rates under circuit-level noise for both codes.
arXiv Detail & Related papers (2024-09-23T07:27:20Z) - Efficient fault-tolerant code switching via one-way transversal CNOT gates [0.0]
We present a code scheme that respects the constraints of FT circuit design by only making use of switching gates.
We analyze application of the scheme to low-distance color codes, which are suitable for operation in existing quantum processors.
We discuss how the scheme can be implemented with a large degree of parallelization, provided that logical auxiliary qubits can be prepared reliably enough.
arXiv Detail & Related papers (2024-09-20T12:54:47Z) - Quantum error correction below the surface code threshold [107.92016014248976]
Quantum error correction provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit.
We present two surface code memories operating below a critical threshold: a distance-7 code and a distance-5 code integrated with a real-time decoder.
Our results present device performance that, if scaled, could realize the operational requirements of large scale fault-tolerant quantum algorithms.
arXiv Detail & Related papers (2024-08-24T23:08:50Z) - Characterization of errors in a CNOT between surface code patches [0.0]
We investigate a lattice-surgery-based CNOT operation between two surface code patches.
We fully characterize the two-qubit logical error channel of the lattice-surgery-based CNOT.
arXiv Detail & Related papers (2024-05-08T18:11:21Z) - Fault-tolerant quantum computing with the parity code and noise-biased qubits [0.0]
We present a fault-tolerant universal quantum computing architecture based on a code concatenation of noise-biased qubits and the parity architecture.
The parity architecture can be understood as a LDPC code tailored specifically to obtain any desired logical connectivity from nearest neighbor physical interactions.
arXiv Detail & Related papers (2024-04-17T12:49:31Z) - Reducing the error rate of a superconducting logical qubit using analog readout information [2.5466328776335936]
Traditional error decoding approaches ignore valuable information embedded in the analog (soft') readout signal.
We present experimental results showcasing the advantages of incorporating soft information into the decoding process.
Our results show a reduction of up to $6.8%$ in the extracted logical error rate with the use of soft information.
arXiv Detail & Related papers (2024-03-01T17:48:23Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Logical blocks for fault-tolerant topological quantum computation [55.41644538483948]
We present a framework for universal fault-tolerant logic motivated by the need for platform-independent logical gate definitions.
We explore novel schemes for universal logic that improve resource overheads.
Motivated by the favorable logical error rates for boundaryless computation, we introduce a novel computational scheme.
arXiv Detail & Related papers (2021-12-22T19:00:03Z) - Finding the disjointness of stabilizer codes is NP-complete [77.34726150561087]
We show that the problem of calculating the $c-disjointness, or even approximating it to within a constant multiplicative factor, is NP-complete.
We provide bounds on the disjointness for various code families, including the CSS codes,$d codes and hypergraph codes.
Our results indicate that finding fault-tolerant logical gates for generic quantum error-correcting codes is a computationally challenging task.
arXiv Detail & Related papers (2021-08-10T15:00:20Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.