論文の概要: Prototype-Based Interpretability for Legal Citation Prediction
- arxiv url: http://arxiv.org/abs/2305.16490v1
- Date: Thu, 25 May 2023 21:40:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-29 18:08:32.356410
- Title: Prototype-Based Interpretability for Legal Citation Prediction
- Title(参考訳): 法的引用予測のためのプロトタイプベース解釈可能性
- Authors: Chu Fei Luo, Rohan Bhambhoria, Samuel Dahan, Xiaodan Zhu
- Abstract要約: 我々は、前例と立法規定の両方に関して、弁護士の思考過程と平行してタスクを設計する。
最初の実験結果から,法の専門家のフィードバックを得て,対象の引用予測を洗練する。
我々は,弁護士が使用する決定パラメータに固執しながら,高い性能を達成し,解釈可能性を高めるためのプロトタイプアーキテクチャを導入する。
- 参考スコア(独自算出の注目度): 16.660004925391842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has made significant progress in the past decade, and
demonstrates potential to solve problems with extensive social impact. In
high-stakes decision making areas such as law, experts often require
interpretability for automatic systems to be utilized in practical settings. In
this work, we attempt to address these requirements applied to the important
problem of legal citation prediction (LCP). We design the task with parallels
to the thought-process of lawyers, i.e., with reference to both precedents and
legislative provisions. After initial experimental results, we refine the
target citation predictions with the feedback of legal experts. Additionally,
we introduce a prototype architecture to add interpretability, achieving strong
performance while adhering to decision parameters used by lawyers. Our study
builds on and leverages the state-of-the-art language processing models for
law, while addressing vital considerations for high-stakes tasks with practical
societal impact.
- Abstract(参考訳): ディープラーニングは過去10年間に大きく進歩し、広範な社会的影響で問題を解決する可能性を示している。
法律などの高い意思決定領域では、専門家は、実用的な環境で利用するために自動システムの解釈可能性を必要とすることが多い。
本稿では,これらの要件を法的引用予測(lcp)の重要な問題に適用することを試みる。
我々は、前例と立法規定の両方に関して、弁護士の思考過程と平行してタスクを設計する。
最初の実験結果から,法の専門家のフィードバックを得て,対象の引用予測を洗練する。
さらに,弁護士が使用する決定パラメータに固執しながら高い性能を達成し,解釈可能性を高めるためのプロトタイプアーキテクチャを導入する。
本研究は,現状の法律言語処理モデルの構築と活用を行うとともに,社会的影響を生かしたハイテイクタスクの重要課題に対処する。
関連論文リスト
- LawLLM: Law Large Language Model for the US Legal System [43.13850456765944]
我々は,米国法域に特化して設計されたマルチタスクモデルであるLawLLM(Law Large Language Model)を紹介する。
類似症例検索(SCR)、PCR(Precedent Case Recommendation)、LJP(Lawal Judgment Prediction)においてLawLLMが優れている
そこで本研究では,各タスクに対して,生の法定データをトレーニング可能な形式に変換する,カスタマイズされたデータ前処理手法を提案する。
論文 参考訳(メタデータ) (2024-07-27T21:51:30Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
人間の推論に触発されたAsk-Discriminate-Predict(ADAPT)推論フレームワークを紹介する。
ADAPTは、ケース事実を分解し、潜在的な電荷を識別し、最終的な判断を予測する。
広く利用されている2つのデータセットに対して行われた実験は、法的な判断予測において、我々のフレームワークの優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-02T05:43:15Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
判例検索のための識別モデルであるDELTAを紹介する。
我々は浅層デコーダを利用して情報ボトルネックを作り、表現能力の向上を目指しています。
本手法は, 判例検索において, 既存の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2024-03-27T10:40:14Z) - Leveraging Large Language Models for Relevance Judgments in Legal Case Retrieval [18.058942674792604]
本稿では,訴訟の関連判断に適した新規な数ショットワークフローを提案する。
LLMと人的専門家の関連判断を比較することで,信頼性の高い関連判断が得られたことを実証的に示す。
論文 参考訳(メタデータ) (2024-03-27T09:46:56Z) - Precedent-Enhanced Legal Judgment Prediction with LLM and Domain-Model
Collaboration [52.57055162778548]
法的判断予測(LJP)は、法律AIにおいてますます重要な課題となっている。
先行は、同様の事実を持つ以前の訴訟であり、国家法制度におけるその後の事件の判断の基礎となっている。
近年のディープラーニングの進歩により、LJPタスクの解決に様々なテクニックが使えるようになった。
論文 参考訳(メタデータ) (2023-10-13T16:47:20Z) - Enhancing Pre-Trained Language Models with Sentence Position Embeddings
for Rhetorical Roles Recognition in Legal Opinions [0.16385815610837165]
法的意見の規模は増え続けており、法的意見の修辞的役割を正確に予測できるモデルを開発することはますます困難になっている。
本稿では,文の位置情報に関する知識によって強化された事前学習言語モデル(PLM)を用いて,修辞的役割を自動的に予測する新しいモデルアーキテクチャを提案する。
LegalEval@SemEval2023コンペティションの注釈付きコーパスに基づいて、我々のアプローチではパラメータが少なく、計算コストが低下することを示した。
論文 参考訳(メタデータ) (2023-10-08T20:33:55Z) - SAILER: Structure-aware Pre-trained Language Model for Legal Case
Retrieval [75.05173891207214]
判例検索は知的法体系において中心的な役割を果たす。
既存の言語モデルの多くは、異なる構造間の長距離依存関係を理解するのが難しい。
本稿では, LEgal ケース検索のための構造対応プレトランザクショナル言語モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T10:47:01Z) - Legal Judgment Prediction with Multi-Stage CaseRepresentation Learning
in the Real Court Setting [25.53133777558123]
本稿では, 実地裁判所から新たなデータセットを導入し, 法的な判断を合理的に百科事典的に予測する。
大規模な民事裁判データセットを用いた広範な実験は、提案モデルが、法的判断予測のためのクレーム、事実、議論の間の相互作用をより正確に特徴付けることができることを示している。
論文 参考訳(メタデータ) (2021-07-12T04:27:14Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
我々は,中国法定長文理解のためのLongformerベースの事前学習言語モデル,Lawformerをリリースする。
判決の予測,類似事例の検索,法的読解,法的質問の回答など,さまざまな法務上の課題について法務担当者を評価した。
論文 参考訳(メタデータ) (2021-05-09T09:39:25Z) - How Does NLP Benefit Legal System: A Summary of Legal Artificial
Intelligence [81.04070052740596]
法律人工知能(Legal AI)は、人工知能、特に自然言語処理の技術を適用して、法的領域におけるタスクに役立てることに焦点を当てている。
本稿では,LegalAIにおける研究の歴史,現状,今後の方向性について紹介する。
論文 参考訳(メタデータ) (2020-04-25T14:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。