論文の概要: The Impacts of AI Avatar Appearance and Disclosure on User Motivation
- arxiv url: http://arxiv.org/abs/2407.21521v1
- Date: Wed, 31 Jul 2024 10:48:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 18:02:39.953401
- Title: The Impacts of AI Avatar Appearance and Disclosure on User Motivation
- Title(参考訳): AIアバターの出現と開示がユーザモチベーションに及ぼす影響
- Authors: Boele Visser, Peter van der Putten, Amirhossein Zohrehvand,
- Abstract要約: 本研究では,仮想インタラクションにおけるAI特徴がユーザのモチベーションに与える影響について検討する。
探索問題のみ, あるいはAIコンパニオンを用いて72,500人以上の参加者を対象に, ゲームベースの実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study examines the influence of perceived AI features on user motivation in virtual interactions. AI avatars, being disclosed as being an AI, or embodying specific genders, could be used in user-AI interactions. Leveraging insights from AI and avatar research, we explore how AI disclosure and gender affect user motivation. We conducted a game-based experiment involving over 72,500 participants who solved search problems alone or with an AI companion. Different groups experienced varying AI appearances and disclosures. We measured play intensity. Results revealed that the presence of another avatar led to less intense play compared to solo play. Disclosure of the avatar as AI heightened effort intensity compared to non-disclosed AI companions. Additionally, a masculine AI appearance reduced effort intensity.
- Abstract(参考訳): 本研究では,仮想インタラクションにおけるAI特徴がユーザのモチベーションに与える影響について検討する。
AIアバターは、AIである、または特定の性別を具現化するものとして公開されており、ユーザーとAIのインタラクションに使用することができる。
AIとアバター研究からの洞察を活用して、AIの開示とジェンダーがユーザーのモチベーションにどのように影響するかを探求する。
探索問題のみ, あるいはAIコンパニオンを用いて72,500人以上の参加者を対象に, ゲームベースの実験を行った。
さまざまなグループがさまざまなAIの出現と開示を経験した。
私たちは遊びの強さを測定した。
結果, 他のアバターの存在は, ソロ演奏に比べ, 強烈な演奏に繋がることがわかった。
AIとしてのアバターの開示は、非開示のAIコンパニオンと比べて努力の強度を高めた。
さらに、男性AIの外観は、努力の強度を低下させた。
関連論文リスト
- Raising the Stakes: Performance Pressure Improves AI-Assisted Decision Making [57.53469908423318]
日常の人が共通のAI支援タスクを完了すると、パフォーマンスプレッシャーがAIアドバイスへの依存に与える影響を示す。
利害関係が高い場合には、AIの説明の有無にかかわらず、利害関係が低い場合よりもAIアドバイスを適切に使用することが分かりました。
論文 参考訳(メタデータ) (2024-10-21T22:39:52Z) - AI-rays: Exploring Bias in the Gaze of AI Through a Multimodal Interactive Installation [7.939652622988465]
我々は、AIが参加者の外観から投機的アイデンティティを生成するインタラクティブなインスタレーションであるAI-rayを紹介する。
投機的なX線ビジョンを使用して、AIが生成する仮定と現実を対比し、AIの精査と偏見を比喩的に強調する。
論文 参考訳(メタデータ) (2024-10-03T18:44:05Z) - Navigating AI Fallibility: Examining People's Reactions and Perceptions of AI after Encountering Personality Misrepresentations [7.256711790264119]
ハイパーパーソナライズされたAIシステムは、パーソナライズされたレコメンデーションを提供するために人々の特性をプロファイルする。
これらのシステムは、人々の最も個人的な特性を推測する際にエラーに免疫がない。
人格の誤表現に遭遇した後、人々がどのように反応し、AIを知覚するかを検討するための2つの研究を行った。
論文 参考訳(メタデータ) (2024-05-25T21:27:15Z) - Interrogating AI: Characterizing Emergent Playful Interactions with ChatGPT [10.907980864371213]
本研究では,人気のAI技術であるChatGPTのユーザによる遊び的なインタラクションに焦点を当てた。
ユーザ談話の半数以上(54%)が遊び心のあるインタラクションを中心に展開していることがわかった。
これらのインタラクションが、AIのエージェンシーを理解し、人間とAIの関係を形作り、AIシステムを設計するための洞察を提供する上で、どのように役立つかを検討する。
論文 参考訳(メタデータ) (2024-01-16T14:44:13Z) - Improving Human-AI Collaboration With Descriptions of AI Behavior [14.904401331154062]
人々はAIシステムを使って意思決定を改善するが、しばしばAIの予測を過度に、あるいは過度に予測し、手伝わなかったよりも悪いパフォーマンスをする。
人々がAIアシスタントを適切に頼りにするために、行動記述を示すことを提案する。
論文 参考訳(メタデータ) (2023-01-06T00:33:08Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - The Who in XAI: How AI Background Shapes Perceptions of AI Explanations [61.49776160925216]
私たちは、2つの異なるグループ、つまりAIのバックグラウンドを持つ人々といない人たちの、異なるタイプのAI説明に対する理解について、混合手法による研究を行います。
その結果,(1) 両群は異なる理由から不合理な数に対する信頼を示し,(2) それぞれの群は意図した設計以上の異なる説明に価値を見出した。
論文 参考訳(メタデータ) (2021-07-28T17:32:04Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Does the Whole Exceed its Parts? The Effect of AI Explanations on
Complementary Team Performance [44.730580857733]
以前の研究では、AIが人間と最高のチームの両方を上回った場合にのみ、説明による改善が観察された。
我々は、3つのデータセットで混合メソッドのユーザー研究を行い、人間に匹敵する精度のAIが、参加者のタスク解決に役立ちます。
説明は、人間がAIの推奨を受け入れる可能性を高める。
論文 参考訳(メタデータ) (2020-06-26T03:34:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。