論文の概要: Quantum Thermodynamics of Open Quantum Systems: Nature of Thermal Fluctuations
- arxiv url: http://arxiv.org/abs/2407.21584v1
- Date: Wed, 31 Jul 2024 13:18:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 12:37:28.315764
- Title: Quantum Thermodynamics of Open Quantum Systems: Nature of Thermal Fluctuations
- Title(参考訳): オープン量子系の量子熱力学:熱ゆらぎの性質
- Authors: Neha Pathania, Devvrat Tiwari, Subhashish Banerjee,
- Abstract要約: 平均力のハミルトニアンによる開量子系の熱力学的挙動について検討する。
弱い結合状態と強い結合状態の両方を分析することで、環境相互作用が量子熱力学量に与える影響を明らかにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the thermodynamic behavior of open quantum systems through the Hamiltonian of Mean Force, focusing on two models: a two-qubit system interacting with a thermal bath and a Jaynes-Cummings Model without the rotating wave approximation. By analyzing both weak and strong coupling regimes, we uncover the impact of environmental interactions on quantum thermodynamic quantities, including specific heat capacity, internal energy, and entropy. Further, the ergotropy and entropy production are computed. We also explore the thermodynamic uncertainty relation, which sets an upper bound on the signal-to-noise ratio.
- Abstract(参考訳): 平均力のハミルトニアンによる開量子系の熱力学挙動を考察し、熱浴と相互作用する2ビット系と、回転波近似を伴わないJaynes-Cummingsモデルという2つのモデルに焦点をあてる。
弱い結合状態と強い結合状態の両方を分析することで、特定の熱容量、内部エネルギー、エントロピーを含む量子熱力学量に対する環境相互作用の影響を明らかにする。
さらに、エルゴトロピーとエントロピーの生成を計算する。
また,信号対雑音比の上限を設定する熱力学的不確実性関係についても検討する。
関連論文リスト
- Thermodynamic Roles of Quantum Environments: From Heat Baths to Work Reservoirs [49.1574468325115]
量子熱力学における環境は通常、熱浴の役割を担う。
同じモデルでは、環境が3つの異なる熱力学的役割を担っていることが示される。
環境の正確な役割は結合の強さと構造によって決定される。
論文 参考訳(メタデータ) (2024-08-01T15:39:06Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
2つのフェルミオンリードに接続された単一レベルの量子ドットである共鳴レベルモデルによる断熱量子ポンピングを考察する。
本研究では, このモデルについて, 点のエネルギーレベルと熱浴によるトンネル速度の変動を考慮した自己完結型熱力学記述法を開発した。
論文 参考訳(メタデータ) (2023-06-14T16:29:18Z) - Non-Markovianity through entropy-based quantum thermodynamics [0.0]
単一量子進化に対する熱流に基づく非マルコビアン性の測定法を提案する。
この測度は、内部エネルギーの符号を反転しない単位力学写像に適用することができる。
論文 参考訳(メタデータ) (2022-10-07T18:09:32Z) - Finite-time quantum Otto engine with a squeezed thermal bath: Role of
quantum coherence and squeezing in the performance and fluctuations [7.533259024252197]
有限時間量子オットー熱エンジンは2つの等方性(熱接触)過程からなる。
2段熱機関の熱力学量の解析式を導出する。
量子オットーエンジンの性能と変動におけるコヒーレンスとスクイーズの役割を明らかにする。
論文 参考訳(メタデータ) (2022-05-26T12:07:51Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
我々は,IBMQプロセッサのストロボスコープ2ストロークサーマルエンジンの量子シミュレーションを行った。
この系は2つの浴槽に繋がった量子スピン鎖で構成され、変分量子熱分解器アルゴリズムを用いて異なる温度で調製される。
論文 参考訳(メタデータ) (2022-03-25T16:55:08Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
熱浴に結合したオープン量子系の熱力学挙動を記述する一般的な理論を開発する。
我々のアプローチは、縮小された開系状態に対する正確な時間局所量子マスター方程式に基づいている。
論文 参考訳(メタデータ) (2021-09-24T11:19:22Z) - Relating Heat and Entanglement in Strong Coupling Thermodynamics [0.0]
我々は強い結合状態における熱力学を研究するための新しいアプローチを開発する。
システムと環境の時間依存性の熱力学特性を計算するために,本手法を適用した。
その結果, 放熱と熱吸収の過渡的不均衡が, システム環境の絡み合いの発生の原因であることが示唆された。
論文 参考訳(メタデータ) (2021-04-13T05:36:21Z) - Qubit thermodynamics far from equilibrium: two perspectives about the
nature of heat and work in the quantum regime [68.8204255655161]
2段階系の熱力学解析のための代替理論フレームワークを開発する。
我々は、局所ハミルトニアンを定義する外部場が存在する場合、ブロッホベクトルを回転させるエネルギーコストを表す新しい作業項の出現を観察する。
両視点から, 2つの異なる系に対する物質・放射相互作用プロセスについて検討した。
論文 参考訳(メタデータ) (2021-03-16T09:31:20Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
オープンな2レベル量子系の温度に対する明示的な表現を得る。
この温度は、システムが熱貯水池と熱平衡に達すると環境温度と一致する。
この理論の枠組みでは、全エントロピー生産は2つの貢献に分けることができる。
論文 参考訳(メタデータ) (2020-04-09T23:06:43Z) - Heat flow and noncommutative quantum mechanics in phase-space [0.0]
量子論で導入された新しい定数を制御することによって、変形したハイゼンベルク・ワイル代数により、高温から寒冷系への熱流が増大する可能性があることを示す。
また、非可換量子力学の文脈における熱力学の第2法則の堅牢性についても簡単な議論を行う。
論文 参考訳(メタデータ) (2019-12-26T15:28:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。