論文の概要: Approximating Rayleigh Scattering in Exoplanetary Atmospheres using Physics-informed Neural Networks (PINNs)
- arxiv url: http://arxiv.org/abs/2408.00084v1
- Date: Wed, 31 Jul 2024 18:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 22:36:04.250901
- Title: Approximating Rayleigh Scattering in Exoplanetary Atmospheres using Physics-informed Neural Networks (PINNs)
- Title(参考訳): 物理インフォームドニューラルネットワーク(PINN)による外惑星大気中のレイリー散乱の近似
- Authors: David Dahlbüdding, Karan Molaverdikhani, Barbara Ercolano, Tommaso Grassi,
- Abstract要約: 本研究では、外惑星大気における放射移動(RT)モデリングの課題に取り組むために、物理インフォームドニューラルネットワーク(PINN)の革新的な応用を紹介した。
提案手法は,RTの制御微分方程式を損失関数に直接組み込む能力で,PINNを利用する。
本研究では,吸収係数とレイリー散乱係数を持つ簡易1次元等温モデルを用いて,太陽系外惑星大気の遷移におけるRTに着目した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This research introduces an innovative application of physics-informed neural networks (PINNs) to tackle the intricate challenges of radiative transfer (RT) modeling in exoplanetary atmospheres, with a special focus on efficiently handling scattering phenomena. Traditional RT models often simplify scattering as absorption, leading to inaccuracies. Our approach utilizes PINNs, noted for their ability to incorporate the governing differential equations of RT directly into their loss function, thus offering a more precise yet potentially fast modeling technique. The core of our method involves the development of a parameterized PINN tailored for a modified RT equation, enhancing its adaptability to various atmospheric scenarios. We focus on RT in transiting exoplanet atmospheres using a simplified 1D isothermal model with pressure-dependent coefficients for absorption and Rayleigh scattering. In scenarios of pure absorption, the PINN demonstrates its effectiveness in predicting transmission spectra for diverse absorption profiles. For Rayleigh scattering, the network successfully computes the RT equation, addressing both direct and diffuse stellar light components. While our preliminary results with simplified models are promising, indicating the potential of PINNs in improving RT calculations, we acknowledge the errors stemming from our approximations as well as the challenges in applying this technique to more complex atmospheric conditions. Specifically, extending our approach to atmospheres with intricate temperature-pressure profiles and varying scattering properties, such as those introduced by clouds and hazes, remains a significant area for future development.
- Abstract(参考訳): 本研究では、外惑星大気における放射移動(RT)モデリングの複雑な課題に取り組むために、物理情報ニューラルネットワーク(PINN)の革新的な応用を紹介し、特に散乱現象を効率的に扱うことに焦点を当てる。
伝統的なRTモデルは、しばしば散乱を吸収として単純化し、不正確な結果をもたらす。
提案手法は,RTの制御微分方程式を直接損失関数に組み込むことができるPINNを用いており,より正確かつ高速なモデリング技術を提供する。
本手法の中核は, 改良RT方程式に適したパラメータ化PINNの開発であり, 種々の大気シナリオへの適応性を高めている。
本研究では,吸収係数とレイリー散乱係数を持つ簡易1次元等温モデルを用いて,太陽系外惑星大気の遷移におけるRTに着目した。
純粋な吸収のシナリオでは、PINNは様々な吸収プロファイルに対する透過スペクトルの予測の有効性を示す。
レイリー散乱では、直接成分と拡散光成分の両方に対処し、RT方程式をうまく計算する。
単純化されたモデルによる予備的な結果が期待でき、RT計算の改善におけるPINNの可能性を示しているが、我々はこの手法をより複雑な大気環境に適用する上での誤りを認めている。
具体的には、複雑な温度圧力プロファイルと雲や干し草など様々な散乱特性を持つ大気へのアプローチは、今後の発展にとって重要な領域である。
関連論文リスト
- Stochastic Reconstruction of Gappy Lagrangian Turbulent Signals by Conditional Diffusion Models [1.7810134788247751]
本研究では, 乱流によって受動的に対流する小物体の軌道に沿って, 空間・速度の欠落を再現する手法を提案する。
近年提案されているデータ駆動機械学習技術である条件付き生成拡散モデルを利用する。
論文 参考訳(メタデータ) (2024-10-31T14:26:10Z) - Neural Message Passing Induced by Energy-Constrained Diffusion [79.9193447649011]
本稿では,MPNNのメカニズムを理解するための原理的解釈可能なフレームワークとして,エネルギー制約付き拡散モデルを提案する。
データ構造が(グラフとして)観察されたり、部分的に観察されたり、完全に観察されなかったりした場合に、新しいモデルが有望な性能が得られることを示す。
論文 参考訳(メタデータ) (2024-09-13T17:54:41Z) - Residual resampling-based physics-informed neural network for neutron diffusion equations [7.105073499157097]
中性子拡散方程式は原子炉の解析において重要な役割を果たす。
従来のPINNアプローチでは、完全に接続されたネットワーク(FCN)アーキテクチャを利用することが多い。
R2-PINNは、現在の方法に固有の制限を効果的に克服し、中性子拡散方程式のより正確で堅牢な解を提供する。
論文 参考訳(メタデータ) (2024-06-23T13:49:31Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
ほとんどの融合法は、融合アルゴリズム自体にのみ焦点をあて、分解モデルを見落としている。
我々は、LR-HSIとHR-MSIの劣化をモデル化するための物理インスパイアされた劣化モデル(PIDM)を提案する。
提案したPIDMは,既存の核融合法における核融合性能を向上させることができる。
論文 参考訳(メタデータ) (2024-02-04T09:07:28Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Predicting the Radiation Field of Molecular Clouds using Denoising
Diffusion Probabilistic Models [2.2215308271891403]
我々は、恒星間放射場(ISRF)強度を4.5,24,250の3バンドダストエミッションに基づいて予測するために、深層学習技術を採用している。
我々のモデルは、複雑で制約の厳しいISRF環境においても、放射線のフィードバック分布を強く予測する。
論文 参考訳(メタデータ) (2023-09-11T20:28:43Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - Estimating permeability of 3D micro-CT images by physics-informed CNNs
based on DNS [1.6274397329511197]
本稿では,地質岩のマイクロCTによる透水率予測手法を提案する。
透過性予測専用のCNNのためのトレーニングデータセットは、古典格子ボルツマン法(LBM)によって通常生成される透過性ラベルからなる。
その代わりに、定常ストークス方程式を効率的かつ分散並列に解き、直接数値シミュレーション(DNS)を行う。
論文 参考訳(メタデータ) (2021-09-04T08:43:19Z) - Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
Kernels [67.81799703916563]
低次元潜在空間におけるフォッカー・プランク方程式の解法として問題を定式化する新しい手法を導入する。
提案モデルでは,潜在分散モーフィング,ジェネレータ,パラメータ化Fokker-Planckカーネル関数からなる。
論文 参考訳(メタデータ) (2021-05-10T17:42:01Z) - Physics-aware deep neural networks for surrogate modeling of turbulent
natural convection [0.0]
Rayleigh-B'enard乱流流に対するPINNのサーロゲートモデルの使用を検討する。
標準ピンの精度が低いゾーンであるトレーニング境界に近い正規化として、どのように機能するかを示す。
50億のDNS座標全体のサロゲートの予測精度は、相対的なL2ノルムで[0.3% -- 4%]の範囲のすべてのフロー変数のエラーをもたらします。
論文 参考訳(メタデータ) (2021-03-05T09:48:57Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
自由エネルギー摂動 (FEP) は60年以上前にズワンツィヒによって自由エネルギー差を推定する方法として提案された。
FEPは、分布間の十分な重複の必要性という厳しい制限に悩まされている。
目標自由エネルギー摂動(Targeted Free Energy Perturbation)と呼ばれるこの問題を緩和するための1つの戦略は、オーバーラップを増やすために構成空間の高次元マッピングを使用する。
論文 参考訳(メタデータ) (2020-02-12T11:10:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。