UKAN-EP: Enhancing U-KAN with Efficient Attention and Pyramid Aggregation for 3D Multi-Modal MRI Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2408.00273v2
- Date: Tue, 10 Jun 2025 19:14:42 GMT
- Title: UKAN-EP: Enhancing U-KAN with Efficient Attention and Pyramid Aggregation for 3D Multi-Modal MRI Brain Tumor Segmentation
- Authors: Yanbing Chen, Tianze Tang, Taehyo Kim, Hai Shu,
- Abstract summary: UKAN-EP is a novel 3D extension of the original 2D U-KAN model for multi-modal MRI brain tumor segmentation.<n>UKAN-EP achieves superior segmentation performance while requiring substantially fewer computational resources.
- Score: 1.7582682214679273
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gliomas are among the most common malignant brain tumors and are characterized by considerable heterogeneity, which complicates accurate detection and segmentation. Multi-modal MRI is the clinical standard for glioma imaging, but variability across modalities and high computational complexity hinder effective automated segmentation. In this paper, we propose UKAN-EP, a novel 3D extension of the original 2D U-KAN model for multi-modal MRI brain tumor segmentation. While U-KAN integrates Kolmogorov-Arnold Network (KAN) layers into a U-Net backbone, UKAN-EP further incorporates Efficient Channel Attention (ECA) and Pyramid Feature Aggregation (PFA) modules to enhance inter-modality feature fusion and multi-scale feature representation. We also introduce a dynamic loss weighting strategy that adaptively balances the Cross-Entropy and Dice losses during training. We evaluate UKAN-EP on the 2024 BraTS-GLI dataset and compare it against strong baselines including U-Net, Attention U-Net, and Swin UNETR. Results show that UKAN-EP achieves superior segmentation performance while requiring substantially fewer computational resources. An extensive ablation study further demonstrates the effectiveness of ECA and PFA, as well as the limited utility of self-attention and spatial attention alternatives. Code is available at https://github.com/TianzeTang0504/UKAN-EP.
Related papers
- RL-U$^2$Net: A Dual-Branch UNet with Reinforcement Learning-Assisted Multimodal Feature Fusion for Accurate 3D Whole-Heart Segmentation [0.624829068285122]
We propose a dual-branch U-Net architecture enhanced by reinforcement learning for feature alignment.<n>The model employs a dual-branch U-shaped network to process CT and MRI patches in parallel, and introduces a novel RL-XAlign module.<n> Experimental results on the publicly available MM-WHS 2017 dataset demonstrate that the proposed RL-U$2$Net outperforms existing state-of-the-art methods.
arXiv Detail & Related papers (2025-08-04T16:12:06Z) - Performance Analysis of Deep Learning Models for Femur Segmentation in MRI Scan [5.5193366921929155]
We evaluate and compare the performance of three CNN-based models, i.e., U-Net, Attention U-Net, and U-KAN, and one transformer-based model, SAM 2.
The dataset comprises 11,164 MRI scans with detailed annotations of femoral regions.
Attention U-Net achieves the highest overall scores, while U-KAN demonstrated superior performance in anatomical regions with a smaller region of interest.
arXiv Detail & Related papers (2025-04-05T05:47:56Z) - Y-CA-Net: A Convolutional Attention Based Network for Volumetric Medical Image Segmentation [47.12719953712902]
discriminative local features are key components for the performance of attention-based VS methods.
We incorporate the convolutional encoder branch with transformer backbone to extract local and global features in a parallel manner.
Y-CT-Net achieves competitive performance on multiple medical segmentation tasks.
arXiv Detail & Related papers (2024-10-01T18:50:45Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification [0.0]
Prostate cancer (PCa) is a severe disease among men globally. It is important to identify PCa early and make a precise diagnosis for effective treatment.
Deep learning (DL) models can enhance existing clinical systems and improve patient care by locating regions of interest for physicians.
This work uses well-known DL models for the classification and segmentation of mpMRI images to detect PCa.
arXiv Detail & Related papers (2023-10-09T03:00:15Z) - FAU-Net: An Attention U-Net Extension with Feature Pyramid Attention for
Prostate Cancer Segmentation [1.8499314936771563]
This contribution presents a deep learning method for the segmentation of prostate zones in MRI images based on U-Net.
The proposed model is compared to seven different U-Net-based architectures.
arXiv Detail & Related papers (2023-09-04T02:54:58Z) - Cross-Modal Fine-Tuning: Align then Refine [83.37294254884446]
ORCA is a cross-modal fine-tuning framework that extends the applicability of a single large-scale pretrained model to diverse modalities.
We show that ORCA obtains state-of-the-art results on 3 benchmarks containing over 60 datasets from 12 modalities.
arXiv Detail & Related papers (2023-02-11T16:32:28Z) - Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
This paper provides a way to analyze argyrophilic nucleolar organizer regions (AgNOR) stained slide using deep learning approaches.
Our results show that the semantic segmentation using U-Net with ResNet-18 or ResNet-34 as the backbone have similar results.
The best model shows an IoU for nucleus, cluster, and satellites of 0.83, 0.92, and 0.99 respectively.
arXiv Detail & Related papers (2022-10-19T15:15:32Z) - A Comparative Study on 1.5T-3T MRI Conversion through Deep Neural
Network Models [0.0]
We explore the capabilities of a number of deep neural network models in generating whole-brain 3T-like MR images from 1.5T MRIs.
To the best of our knowledge, this study is the first work to evaluate multiple deep learning solutions for whole-brain MRI conversion.
arXiv Detail & Related papers (2022-10-12T16:14:42Z) - Large-Kernel Attention for 3D Medical Image Segmentation [14.76728117630242]
In this paper, a novel large- kernel (LK) attention module is proposed to achieve accurate multi-organ segmentation and tumor segmentation.
The advantages of convolution and self-attention are combined in the proposed LK attention module, including local contextual information, long-range dependence, and channel adaptation.
The module also decomposes the LK convolution to optimize the computational cost and can be easily incorporated into FCNs such as U-Net.
arXiv Detail & Related papers (2022-07-19T16:32:55Z) - Implementation of a Modified U-Net for Medical Image Segmentation on
Edge Devices [0.5735035463793008]
We present the implementation of Modified U-Net on Intel Movidius Neural Compute Stick 2 (NCS-2) for the segmentation of medical images.
Experiments are reported for segmentation task on three medical imaging datasets: BraTs dataset of brain MRI, heart MRI dataset, and ZNSDB dataset.
arXiv Detail & Related papers (2022-06-06T05:25:19Z) - Feature-enhanced Generation and Multi-modality Fusion based Deep Neural
Network for Brain Tumor Segmentation with Missing MR Modalities [2.867517731896504]
The main problem is that not all types of MRIs are always available in clinical exams.
We propose a novel brain tumor segmentation network in the case of missing one or more modalities.
The proposed network consists of three sub-networks: a feature-enhanced generator, a correlation constraint block and a segmentation network.
arXiv Detail & Related papers (2021-11-08T10:59:40Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - ANNETTE: Accurate Neural Network Execution Time Estimation with Stacked
Models [56.21470608621633]
We propose a time estimation framework to decouple the architectural search from the target hardware.
The proposed methodology extracts a set of models from micro- kernel and multi-layer benchmarks and generates a stacked model for mapping and network execution time estimation.
We compare estimation accuracy and fidelity of the generated mixed models, statistical models with the roofline model, and a refined roofline model for evaluation.
arXiv Detail & Related papers (2021-05-07T11:39:05Z) - R2U3D: Recurrent Residual 3D U-Net for Lung Segmentation [17.343802171952195]
We propose a novel model, namely, Recurrent Residual 3D U-Net (R2U3D), for the 3D lung segmentation task.
In particular, the proposed model integrates 3D convolution into the Recurrent Residual Neural Network based on U-Net.
The proposed R2U3D network is trained on the publicly available dataset LUNA16 and it achieves state-of-the-art performance.
arXiv Detail & Related papers (2021-05-05T19:17:14Z) - Meningioma segmentation in T1-weighted MRI leveraging global context and
attention mechanisms [0.2624902795082451]
Meningiomas are the most common type of primary brain tumor, accounting for approximately 30% of all brain tumors.
We propose the inclusion of attention mechanisms over a U-Net architecture.
We studied the impact of multi-scale input and deep supervision components.
arXiv Detail & Related papers (2021-01-19T16:40:53Z) - Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention
and Dynamic Resampling [13.542898009730804]
The performance of relevant algorithms is significantly affected by the proper fusion of the multi-modal information.
We present the Max-Fusion U-Net that achieves improved pathology segmentation performance.
We evaluate our methods using the Myocardial pathology segmentation (MyoPS) combining the multi-sequence CMR dataset.
arXiv Detail & Related papers (2020-09-05T17:24:23Z) - Searching Collaborative Agents for Multi-plane Localization in 3D
Ultrasound [59.97366727654676]
3D ultrasound (US) is widely used due to its rich diagnostic information, portability and low cost.
Standard plane (SP) localization in US volume not only improves efficiency and reduces user-dependence, but also boosts 3D US interpretation.
We propose a novel Multi-Agent Reinforcement Learning framework to localize multiple uterine SPs in 3D US simultaneously.
arXiv Detail & Related papers (2020-07-30T07:23:55Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
We propose a novel multi-site network (MS-Net) for improving prostate segmentation by learning robust representations.
Our MS-Net improves the performance across all datasets consistently, and outperforms state-of-the-art methods for multi-site learning.
arXiv Detail & Related papers (2020-02-09T14:11:50Z) - REST: Robust and Efficient Neural Networks for Sleep Monitoring in the
Wild [62.36144064259933]
We propose REST, a new method that simultaneously tackles both issues via adversarial training and controlling the Lipschitz constant of the neural network.
We demonstrate that REST produces highly-robust and efficient models that substantially outperform the original full-sized models in the presence of noise.
By deploying these models to an Android application on a smartphone, we quantitatively observe that REST allows models to achieve up to 17x energy reduction and 9x faster inference.
arXiv Detail & Related papers (2020-01-29T17:23:16Z) - Deep Attentive Features for Prostate Segmentation in 3D Transrectal
Ultrasound [59.105304755899034]
This paper develops a novel 3D deep neural network equipped with attention modules for better prostate segmentation in transrectal ultrasound (TRUS) images.
Our attention module utilizes the attention mechanism to selectively leverage the multilevel features integrated from different layers.
Experimental results on challenging 3D TRUS volumes show that our method attains satisfactory segmentation performance.
arXiv Detail & Related papers (2019-07-03T05:21:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.