論文の概要: A Qualitative Study on Using ChatGPT for Software Security: Perception vs. Practicality
- arxiv url: http://arxiv.org/abs/2408.00435v1
- Date: Thu, 1 Aug 2024 10:14:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 21:05:55.561242
- Title: A Qualitative Study on Using ChatGPT for Software Security: Perception vs. Practicality
- Title(参考訳): ソフトウェアセキュリティにおけるChatGPTの利用に関する質的研究: 知覚と実践性
- Authors: M. Mehdi Kholoosi, M. Ali Babar, Roland Croft,
- Abstract要約: ChatGPTは大きな言語モデル(LLM)であり、目覚ましい意味理解と精度で様々なタスクを実行できる。
本研究は,ソフトウェアセキュリティを支える新技術としてChatGPTの可能性を理解することを目的としている。
セキュリティ実践者は、ChatGPTを脆弱性検出、情報検索、侵入テストなど、さまざまなソフトウェアセキュリティタスクに有用であると判断した。
- 参考スコア(独自算出の注目度): 1.7624347338410744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) advancements have enabled the development of Large Language Models (LLMs) that can perform a variety of tasks with remarkable semantic understanding and accuracy. ChatGPT is one such LLM that has gained significant attention due to its impressive capabilities for assisting in various knowledge-intensive tasks. Due to the knowledge-intensive nature of engineering secure software, ChatGPT's assistance is expected to be explored for security-related tasks during the development/evolution of software. To gain an understanding of the potential of ChatGPT as an emerging technology for supporting software security, we adopted a two-fold approach. Initially, we performed an empirical study to analyse the perceptions of those who had explored the use of ChatGPT for security tasks and shared their views on Twitter. It was determined that security practitioners view ChatGPT as beneficial for various software security tasks, including vulnerability detection, information retrieval, and penetration testing. Secondly, we designed an experiment aimed at investigating the practicality of this technology when deployed as an oracle in real-world settings. In particular, we focused on vulnerability detection and qualitatively examined ChatGPT outputs for given prompts within this prominent software security task. Based on our analysis, responses from ChatGPT in this task are largely filled with generic security information and may not be appropriate for industry use. To prevent data leakage, we performed this analysis on a vulnerability dataset compiled after the OpenAI data cut-off date from real-world projects covering 40 distinct vulnerability types and 12 programming languages. We assert that the findings from this study would contribute to future research aimed at developing and evaluating LLMs dedicated to software security.
- Abstract(参考訳): 人工知能(AI)の進歩により、目覚ましい意味理解と精度で様々なタスクを実行できる大規模言語モデル(LLM)の開発が可能になった。
ChatGPTは、様々な知識集約タスクを補助する優れた能力によって、大きな注目を集めているLCMである。
工学的安全ソフトウェアの知識集約的な性質のため、ChatGPTの補助は、ソフトウェアの開発と進化の間、セキュリティ関連のタスクのために探索されることが期待されている。
ソフトウェアセキュリティを支える新技術としてのChatGPTの可能性を理解するために,我々は2つのアプローチを採用した。
当初我々は、セキュリティタスクにChatGPTを使用したことを調査し、Twitter上で彼らの見解を共有している人々の認識を分析するための実証的研究を行った。
セキュリティ実践者は、ChatGPTを脆弱性検出、情報検索、侵入テストなど、さまざまなソフトウェアセキュリティタスクに有用であると判断した。
第2に、現実世界の環境での託宣として展開する際の実用性調査を目的とした実験を設計した。
特に、脆弱性検出と、この顕著なソフトウェアセキュリティタスクの中で与えられたプロンプトに対するChatGPT出力の質的検証に焦点をあてた。
このタスクにおけるChatGPTからの応答は、我々の分析に基づいて、概ね一般的なセキュリティ情報で満たされており、業界での使用には適さないかもしれない。
データ漏洩を防止するために、私たちは、40の異なる脆弱性タイプと12のプログラミング言語を含む現実世界のプロジェクトからOpenAIデータ遮断日後にコンパイルされた脆弱性データセットに対して、この分析を行った。
本研究から得られた知見は,ソフトウェアセキュリティに特化したLSMの開発と評価を目的とした今後の研究に寄与する,と我々は主張する。
関連論文リスト
- Multimodal Situational Safety [73.63981779844916]
マルチモーダル・シチュエーション・セーフティ(Multimodal situational Safety)と呼ばれる新しい安全課題の評価と分析を行う。
MLLMが言語やアクションを通じても安全に応答するためには、言語クエリが対応する視覚的コンテキスト内での安全性への影響を評価する必要があることが多い。
我々は,現在のMLLMの状況安全性能を評価するためのマルチモーダル状況安全ベンチマーク(MSSBench)を開発した。
論文 参考訳(メタデータ) (2024-10-08T16:16:07Z) - Developers' Perceptions on the Impact of ChatGPT in Software Development: A Survey [13.257222195239375]
ソフトウェアの品質、生産性、仕事満足度に対するChatGPTの影響を理解するため、207人のソフトウェア開発者と調査を行った。
この研究は、ChatGPTの今後の適応に関する開発者の期待、潜在的な仕事の移転に関する懸念、規制介入の視点について詳しく述べている。
論文 参考訳(メタデータ) (2024-05-20T17:31:16Z) - Your Instructions Are Not Always Helpful: Assessing the Efficacy of
Instruction Fine-tuning for Software Vulnerability Detection [9.763041664345105]
ソフトウェアは、固有の脆弱性のために潜在的なサイバーセキュリティリスクを引き起こす。
ディープラーニングは、広範な機能エンジニアリングを必要とせずに、優れたパフォーマンスを実現することができるため、このタスクの効果的なツールとして期待されている。
最近の研究は、多様なタスクにおけるディープラーニングの有効性を強調している。
本稿では,モデル,特に最近の言語モデルが,学習データに使用されるプログラミング言語を超えて一般化する能力について検討する。
論文 参考訳(メタデータ) (2024-01-15T04:45:27Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
我々は、70,346のサンプルを含む大規模なデータセットを用いて、完全な脆弱性管理プロセスを含む6つのタスクでChatGPTの機能を探求する。
注目すべき例として、ChatGPTのソフトウェアバグレポートのタイトル生成などのタスクにおける熟練度がある。
以上の結果から,ChatGPTが抱える障害が明らかとなり,将来的な方向性に光を当てた。
論文 参考訳(メタデータ) (2023-11-11T11:01:13Z) - Evaluating the Impact of ChatGPT on Exercises of a Software Security
Course [2.3017018980874617]
ChatGPTは、Webアプリケーションに挿入した28の脆弱性の20をホワイトボックス設定で識別できる。
ChatGPTは、生徒に修正を求める10の脆弱性に対して、9つの満足できる侵入テストとレコメンデーションの修正を行います。
論文 参考訳(メタデータ) (2023-09-18T18:53:43Z) - Prompt-Enhanced Software Vulnerability Detection Using ChatGPT [9.35868869848051]
GPTのような大規模言語モデル(LLM)は、その驚くべき知性のためにかなりの注目を集めている。
本稿では,ChatGPTを用いたソフトウェア脆弱性検出の性能について検討する。
論文 参考訳(メタデータ) (2023-08-24T10:30:33Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
IT運用のための人工知能(AIOps)は、AIのパワーとIT運用プロセスが生成するビッグデータを組み合わせることを目的としている。
我々は、IT運用活動が発信する重要なデータの種類、分析における規模と課題、そしてどのように役立つかについて深く議論する。
主要なAIOpsタスクは、インシデント検出、障害予測、根本原因分析、自動アクションに分類します。
論文 参考訳(メタデータ) (2023-04-10T15:38:12Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z) - Semantic Similarity-Based Clustering of Findings From Security Testing
Tools [1.6058099298620423]
特に、複数の観点からソフトウェアアーチファクトを検査した後、レポートを生成する自動セキュリティテストツールを使用するのが一般的である。
これらの重複した発見を手動で識別するには、セキュリティ専門家は時間、努力、知識といったリソースを投資する必要がある。
本研究では,意味論的に類似したセキュリティ発見のクラスタリングに自然言語処理を適用する可能性について検討した。
論文 参考訳(メタデータ) (2022-11-20T19:03:19Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。