論文の概要: Developers' Perceptions on the Impact of ChatGPT in Software Development: A Survey
- arxiv url: http://arxiv.org/abs/2405.12195v1
- Date: Mon, 20 May 2024 17:31:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-21 12:35:30.399834
- Title: Developers' Perceptions on the Impact of ChatGPT in Software Development: A Survey
- Title(参考訳): ソフトウェア開発におけるChatGPTの影響に関する開発者の認識: 調査
- Authors: Thiago S. Vaillant, Felipe Deveza de Almeida, Paulo Anselmo M. S. Neto, Cuiyun Gao, Jan Bosch, Eduardo Santana de Almeida,
- Abstract要約: ソフトウェアの品質、生産性、仕事満足度に対するChatGPTの影響を理解するため、207人のソフトウェア開発者と調査を行った。
この研究は、ChatGPTの今後の適応に関する開発者の期待、潜在的な仕事の移転に関する懸念、規制介入の視点について詳しく述べている。
- 参考スコア(独自算出の注目度): 13.257222195239375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Models (LLMs), including ChatGPT and analogous systems, continue to advance, their robust natural language processing capabilities and diverse applications have garnered considerable attention. Nonetheless, despite the increasing acknowledgment of the convergence of Artificial Intelligence (AI) and Software Engineering (SE), there is a lack of studies involving the impact of this convergence on the practices and perceptions of software developers. Understanding how software developers perceive and engage with AI tools, such as ChatGPT, is essential for elucidating the impact and potential challenges of incorporating AI-driven tools in the software development process. In this paper, we conducted a survey with 207 software developers to understand the impact of ChatGPT on software quality, productivity, and job satisfaction. Furthermore, the study delves into developers' expectations regarding future adaptations of ChatGPT, concerns about potential job displacement, and perspectives on regulatory interventions.
- Abstract(参考訳): ChatGPTや類似システムを含むLarge Language Models (LLMs) は進歩を続けており、その堅牢な自然言語処理能力と多様なアプリケーションが注目を集めている。
それでも、人工知能(AI)とソフトウェア工学(SE)の収束がますます認知されているにもかかわらず、この収束がソフトウェア開発者の実践や認識に与える影響に関する研究が不足している。
ソフトウェア開発者がChatGPTのようなAIツールをどのように認識し、関与しているかを理解することは、AI駆動ツールをソフトウェア開発プロセスに組み込むことによる影響と潜在的な課題を解明するために不可欠である。
本稿では,207人のソフトウェア開発者を対象に,ChatGPTがソフトウェア品質,生産性,仕事満足度に与える影響について調査を行った。
さらに、この研究は、ChatGPTの今後の適応に対する開発者の期待、潜在的な仕事の移り変わりに関する懸念、規制介入の視点を掘り下げている。
関連論文リスト
- Lingma SWE-GPT: An Open Development-Process-Centric Language Model for Automated Software Improvement [62.94719119451089]
Lingma SWE-GPTシリーズは、現実世界のコード提出活動から学び、シミュレーションする。
Lingma SWE-GPT 72BはGitHubの30.20%の問題を解決する。
論文 参考訳(メタデータ) (2024-11-01T14:27:16Z) - "I Don't Use AI for Everything": Exploring Utility, Attitude, and Responsibility of AI-empowered Tools in Software Development [19.851794567529286]
本研究では、ソフトウェア開発プロセスにおけるAIを活用したツールの採用、影響、およびセキュリティに関する考察を行う。
ソフトウェア開発のさまざまな段階において,AIツールが広く採用されていることが判明した。
論文 参考訳(メタデータ) (2024-09-20T09:17:10Z) - A Qualitative Study on Using ChatGPT for Software Security: Perception vs. Practicality [1.7624347338410744]
ChatGPTは大きな言語モデル(LLM)であり、目覚ましい意味理解と精度で様々なタスクを実行できる。
本研究は,ソフトウェアセキュリティを支える新技術としてChatGPTの可能性を理解することを目的としている。
セキュリティ実践者は、ChatGPTを脆弱性検出、情報検索、侵入テストなど、さまざまなソフトウェアセキュリティタスクに有用であると判断した。
論文 参考訳(メタデータ) (2024-08-01T10:14:05Z) - Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPTは、ソフトウェア生産効率を向上させるAIツールである。
10万人あたりのgitプッシュ数、リポジトリ数、ユニークな開発者数に対するChatGPTの影響を見積もっています。
これらの結果は、ChatGPTのようなAIツールが開発者の生産性を大幅に向上させる可能性があることを示唆している。
論文 参考訳(メタデータ) (2024-06-16T19:11:15Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Rocks Coding, Not Development--A Human-Centric, Experimental Evaluation
of LLM-Supported SE Tasks [9.455579863269714]
コーディングタスクやソフトウェア開発の典型的なタスクにおいて,ChatGPTがどの程度役に立つかを検討した。
単純なコーディング問題ではChatGPTはうまく機能していましたが、典型的なソフトウェア開発タスクをサポートするパフォーマンスはそれほど良くありませんでした。
そこで本研究では,ChatGPTを用いたソフトウェアエンジニアリングタスクを現実の開発者に提供する。
論文 参考訳(メタデータ) (2024-02-08T13:07:31Z) - Charting a Path to Efficient Onboarding: The Role of Software
Visualization [49.1574468325115]
本研究は,ソフトウェアビジュアライゼーションツールを用いたマネージャ,リーダ,開発者の親しみやすさを探求することを目的としている。
本手法は, 質問紙調査と半構造化面接を用いて, 実践者から収集したデータの量的, 質的分析を取り入れた。
論文 参考訳(メタデータ) (2024-01-17T21:30:45Z) - ChatGPT as a Software Development Bot: A Project-based Study [5.518217604591736]
本研究では,生成型AIツール,特にChatGPTが大学生のソフトウェア開発経験に与える影響について検討した。
その結果,ChatGPTはソフトウェア開発教育におけるスキルギャップに大きく対処し,効率性,正確性,協調性を向上した。
論文 参考訳(メタデータ) (2023-10-20T16:48:19Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
本稿では,ChatGPTのようなソフトウェア技術者やAIシステムのパフォーマンスを,さまざまな評価指標で比較した実証的研究を行う。
この論文は、さまざまな評価基準を考慮して、ソフトウェアエンジニアとAIベースのソリューションの包括的な比較が、人間と機械のコラボレーションを促進する上で重要であることを示唆している。
論文 参考訳(メタデータ) (2023-05-19T17:25:54Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
大規模なソフトウェア開発は、非常に協力的な取り組みになっています。
この章では、開発ボットとGitHub Actionsのエコシステムについて解説する。
この領域における最先端技術に関する広範な調査を提供する。
論文 参考訳(メタデータ) (2023-05-08T15:24:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。