論文の概要: Modeling stochastic eye tracking data: A comparison of quantum generative adversarial networks and Markov models
- arxiv url: http://arxiv.org/abs/2408.00673v1
- Date: Thu, 1 Aug 2024 16:15:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-04 20:06:59.358418
- Title: Modeling stochastic eye tracking data: A comparison of quantum generative adversarial networks and Markov models
- Title(参考訳): 確率的視線追跡データのモデル化:量子生成逆数ネットワークとマルコフモデルの比較
- Authors: Shailendra Bhandari, Pedro Lincastre, Pedro Lind,
- Abstract要約: 本稿では,眼球運動速度データのモデル化に量子生成対向ネットワークQGANの利用について検討する。
我々は,QGANの高度な計算能力が,従来の数学的モデルを超えた複雑な分布のモデリングを促進できるかどうかを評価する。
その結果,QGANは複雑な分布を近似する可能性を示したが,マルコフモデルは実データ分布を正確に再現する上で常に優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the use of quantum generative adversarial networks QGANs for modeling eye movement velocity data. We assess whether the advanced computational capabilities of QGANs can enhance the modeling of complex stochastic distribution beyond the traditional mathematical models, particularly the Markov model. The findings indicate that while QGANs demonstrate potential in approximating complex distributions, the Markov model consistently outperforms in accurately replicating the real data distribution. This comparison underlines the challenges and avenues for refinement in time series data generation using quantum computing techniques. It emphasizes the need for further optimization of quantum models to better align with real-world data characteristics.
- Abstract(参考訳): 本稿では,眼球運動速度データのモデル化に量子生成対向ネットワークQGANの利用について検討する。
我々は、QGANの高度な計算能力が、従来の数学的モデル、特にマルコフモデルを超えて、複雑な確率分布のモデリングを強化することができるかどうかを評価する。
その結果,QGANは複雑な分布を近似する可能性を示したが,マルコフモデルは実データ分布を正確に再現する上で常に優れていた。
この比較は、量子コンピューティング技術を用いた時系列データ生成の洗練の課題と道筋を示すものである。
量子モデルのさらなる最適化は、実世界のデータ特性とよりよく整合する必要性を強調している。
関連論文リスト
- Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Quantum Generative Modeling of Sequential Data with Trainable Token
Embedding [0.0]
ボルンマシンとして知られる量子インスパイアされた生成モデルは、古典的および量子的データの学習において大きな進歩を見せている。
本稿では,MPSを同時に使用可能なトレーニング可能な量子計測演算子への埋め込み法を一般化する。
私たちの研究は、トレーニング可能な埋め込みと組み合わせることで、Bornマシンはより良いパフォーマンスを示し、データセットからより深い相関関係を学習できることを示した。
論文 参考訳(メタデータ) (2023-11-08T22:56:37Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Distributional Learning of Variational AutoEncoder: Application to
Synthetic Data Generation [0.7614628596146602]
本稿では,VAEフレームワークの計算上の利点を犠牲にすることなく,モデル容量を拡大する手法を提案する。
VAEモデルのデコーダは、非対称ラプラス分布の無限混合からなる。
提案したモデルを合成データ生成に適用し,特にデータプライバシの調整が容易であることを示す。
論文 参考訳(メタデータ) (2023-02-22T11:26:50Z) - Context-specific kernel-based hidden Markov model for time series
analysis [9.007829035130886]
カーネル密度推定に基づく隠れマルコフモデルを提案する。
コンテキスト固有のベイズネットワークを使ってカーネルの依存関係をキャプチャできる。
提案モデルによる可能性と分類精度の利点を定量化し分析する。
論文 参考訳(メタデータ) (2023-01-24T09:10:38Z) - Reflection Equivariant Quantum Neural Networks for Enhanced Image
Classification [0.7232471205719458]
我々は、データに固有の対称性を明示的に尊重する新しい機械学習モデル、いわゆる幾何量子機械学習(GQML)を構築した。
これらのネットワークは、複雑な実世界の画像データセットに対する一般的なアンサーゼを一貫して、そして著しく向上させることができる。
論文 参考訳(メタデータ) (2022-12-01T04:10:26Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
本稿では,ClusterQと呼ばれるデータフリーな量子化手法を提案する。
意味的特徴のクラス間分離性を高めるために,特徴分布統計をクラスタ化し,整列する。
また、クラス内分散を組み込んで、クラスワイドモードの崩壊を解決する。
論文 参考訳(メタデータ) (2022-04-30T06:58:56Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Closed-form Continuous-Depth Models [99.40335716948101]
連続深度ニューラルモデルは高度な数値微分方程式解法に依存している。
我々は,CfCネットワークと呼ばれる,記述が簡単で,少なくとも1桁高速な新しいモデル群を提示する。
論文 参考訳(メタデータ) (2021-06-25T22:08:51Z) - GINNs: Graph-Informed Neural Networks for Multiscale Physics [1.1470070927586016]
Graph-Informed Neural Network (GINN)は、ディープラーニングと確率的グラフィカルモデル(PGM)を組み合わせたハイブリッドアプローチである。
GINNは、厳密な信頼区間を持つ関連する非ガウスススキュードQoIのカーネル密度推定を生成する。
論文 参考訳(メタデータ) (2020-06-26T05:47:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。