論文の概要: GINNs: Graph-Informed Neural Networks for Multiscale Physics
- arxiv url: http://arxiv.org/abs/2006.14807v1
- Date: Fri, 26 Jun 2020 05:47:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-16 22:06:05.180115
- Title: GINNs: Graph-Informed Neural Networks for Multiscale Physics
- Title(参考訳): GINN:マルチスケール物理のためのグラフインフォームドニューラルネットワーク
- Authors: Eric J. Hall and S{\o}ren Taverniers and Markos A. Katsoulakis and
Daniel M. Tartakovsky
- Abstract要約: Graph-Informed Neural Network (GINN)は、ディープラーニングと確率的グラフィカルモデル(PGM)を組み合わせたハイブリッドアプローチである。
GINNは、厳密な信頼区間を持つ関連する非ガウスススキュードQoIのカーネル密度推定を生成する。
- 参考スコア(独自算出の注目度): 1.1470070927586016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the concept of a Graph-Informed Neural Network (GINN), a hybrid
approach combining deep learning with probabilistic graphical models (PGMs)
that acts as a surrogate for physics-based representations of multiscale and
multiphysics systems. GINNs address the twin challenges of removing intrinsic
computational bottlenecks in physics-based models and generating large data
sets for estimating probability distributions of quantities of interest (QoIs)
with a high degree of confidence. Both the selection of the complex physics
learned by the NN and its supervised learning/prediction are informed by the
PGM, which includes the formulation of structured priors for tunable control
variables (CVs) to account for their mutual correlations and ensure physically
sound CV and QoI distributions. GINNs accelerate the prediction of QoIs
essential for simulation-based decision-making where generating sufficient
sample data using physics-based models alone is often prohibitively expensive.
Using a real-world application grounded in supercapacitor-based energy storage,
we describe the construction of GINNs from a Bayesian network-embedded
homogenized model for supercapacitor dynamics, and demonstrate their ability to
produce kernel density estimates of relevant non-Gaussian, skewed QoIs with
tight confidence intervals.
- Abstract(参考訳): グラフインフォームドニューラルネットワーク(GINN)の概念は、ディープラーニングと確率的グラフィカルモデル(PGM)を組み合わせたハイブリッドアプローチであり、多スケール・多物理系の物理に基づく表現の代用として機能する。
GINNは、物理学に基づくモデルにおける本質的な計算ボトルネックを除去し、高い信頼度で興味の量(QoI)の確率分布を推定するための大きなデータセットを生成するという2つの課題に対処する。
NNが学習した複雑な物理学の選択と、その教師付き学習/予測はPGMによって通知され、それぞれの相互相関を考慮し、物理的に健全なCVとQoI分布を確保するために、可変制御変数(CV)の構造化前の構造を定式化することを含む。
GINNは、物理モデルだけで十分なサンプルデータを生成する場合、シミュレーションベースの意思決定に不可欠なQoIの予測を加速する。
スーパーキャパシタに基づくエネルギー貯蔵を基盤とした実世界のアプリケーションを用いて,スーパーキャパシタダイナミクスのためのベイジアンネットワーク埋め込みホモゲナイズドモデルによるギンの構成と,信頼区間の密接な非ガウシアン・スキューのカーネル密度推定能力について述べる。
関連論文リスト
- Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
我々は,PE-GNN,Quantile Neural Networks,および再校正技術を完全非パラメトリックフレームワークに統合する新しい手法である,位置グラフ量子ニューラルネットワーク(PE-GQNN)を紹介する。
ベンチマークデータセットの実験では、PE-GQNNは予測精度と不確実性の定量化の両方で既存の最先端手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-09-27T16:02:12Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
本研究は,線形等式制約を厳格に保証する物理インフォームドニューラルネットワークKKT-hPINNを提案する。
溶融タンク炉ユニット, 抽出蒸留サブシステム, 化学プラントのアスペンモデル実験により, このモデルが予測精度をさらに高めることを示した。
論文 参考訳(メタデータ) (2024-02-11T17:40:26Z) - Multi-fidelity physics constrained neural networks for dynamical systems [16.6396704642848]
マルチスケール物理制約ニューラルネットワーク(MSPCNN)を提案する。
MSPCNNは、異なるレベルの忠実度を持つデータを統一された潜在空間に組み込む新しい手法を提供する。
従来の手法とは異なり、MSPCNNは予測モデルをトレーニングするために複数の忠実度データを使用する。
論文 参考訳(メタデータ) (2024-02-03T05:05:26Z) - Evaluation of machine learning architectures on the quantification of
epistemic and aleatoric uncertainties in complex dynamical systems [0.0]
不確実量化(英: Uncertainty Quantification、UQ)は、モデル誤差の自己評価値である。
ガウス過程とファミリーUQ強化ニューラルネットワークの両方を含む機械学習技術について検討する。
検証データ上の正規化残差の分布と推定不確かさの分布の2つの指標を用いて,UQ精度(モデル精度とは異なる)を評価する。
論文 参考訳(メタデータ) (2023-06-27T02:35:25Z) - Gibbs-Duhem-Informed Neural Networks for Binary Activity Coefficient
Prediction [45.84205238554709]
本稿では,Gibs-Duhem-informed Neural Network を用いて,様々な組成における二成分活性係数の予測を行う。
ニューラルネットワークの学習における損失関数にギブス・デュヘム方程式を明示的に含んでいる。
論文 参考訳(メタデータ) (2023-05-31T07:36:45Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
スケーラブルで表現力のあるグラフニューラルネットワークモデルであるForceNetを開発し、原子力を近似します。
提案したForceNetは、最先端の物理ベースのGNNよりも正確に原子力を予測することができる。
論文 参考訳(メタデータ) (2021-03-02T03:09:06Z) - Physics-aware, deep probabilistic modeling of multiscale dynamics in the
Small Data regime [0.0]
本稿では,予測的,低次元粗粒度(CG)変数を同時に同定する確率論的視点を提供する。
我々は、CG進化法則の右辺を表すために、ディープニューラルネットワークの表現能力を活用している。
移動粒子の高次元システムにおいて,提案手法の有効性を実証する。
論文 参考訳(メタデータ) (2021-02-08T15:04:05Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
確率的負荷予測(PLF)は、スマートエネルギーグリッドの効率的な管理に必要な拡張ツールチェーンの重要なコンポーネントです。
ベイジアン混合密度ネットワークを枠とした新しいPLFアプローチを提案する。
後方分布の信頼性と計算にスケーラブルな推定を行うため,平均場変動推定と深層アンサンブルを統合した。
論文 参考訳(メタデータ) (2020-12-23T16:21:34Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。