論文の概要: Adaptive traffic signal safety and efficiency improvement by multi objective deep reinforcement learning approach
- arxiv url: http://arxiv.org/abs/2408.00814v1
- Date: Thu, 1 Aug 2024 13:10:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-05 15:40:20.122946
- Title: Adaptive traffic signal safety and efficiency improvement by multi objective deep reinforcement learning approach
- Title(参考訳): 多目的深層学習による適応交通信号の安全性と効率向上
- Authors: Shahin Mirbakhsh, Mahdi Azizi,
- Abstract要約: 本研究では,多目的深部強化学習(DRL)技術を活用した適応交通信号制御(ATSC)の革新的手法を提案する。
提案手法は, 安全, 効率, 脱炭目標に対処しながら, 交差点における制御戦略を強化することを目的としている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research introduces an innovative method for adaptive traffic signal control (ATSC) through the utilization of multi-objective deep reinforcement learning (DRL) techniques. The proposed approach aims to enhance control strategies at intersections while simultaneously addressing safety, efficiency, and decarbonization objectives. Traditional ATSC methods typically prioritize traffic efficiency and often struggle to adapt to real-time dynamic traffic conditions. To address these challenges, the study suggests a DRL-based ATSC algorithm that incorporates the Dueling Double Deep Q Network (D3QN) framework. The performance of this algorithm is assessed using a simulated intersection in Changsha, China. Notably, the proposed ATSC algorithm surpasses both traditional ATSC and ATSC algorithms focused solely on efficiency optimization by achieving over a 16% reduction in traffic conflicts and a 4% decrease in carbon emissions. Regarding traffic efficiency, waiting time is reduced by 18% compared to traditional ATSC, albeit showing a slight increase (0.64%) compared to the DRL-based ATSC algorithm integrating the D3QN framework. This marginal increase suggests a trade-off between efficiency and other objectives like safety and decarbonization. Additionally, the proposed approach demonstrates superior performance, particularly in scenarios with high traffic demand, across all three objectives. These findings contribute to advancing traffic control systems by offering a practical and effective solution for optimizing signal control strategies in real-world traffic situations.
- Abstract(参考訳): 本研究では,多目的深部強化学習(DRL)技術を活用した適応交通信号制御(ATSC)の革新的手法を提案する。
提案手法は, 安全, 効率, 脱炭目標に対処しながら, 交差点における制御戦略を強化することを目的としている。
従来のATSC手法は、通常、交通効率を優先し、しばしばリアルタイムの動的交通条件に適応するのに苦労する。
これらの課題に対処するために、Dueling Double Deep Q Network(D3QN)フレームワークを組み込んだDRLベースのATSCアルゴリズムを提案する。
このアルゴリズムの性能は、中国の長社におけるシミュレーション交点を用いて評価する。
特に、提案したATSCアルゴリズムは、トラフィック競合の16%以上、二酸化炭素排出量の4%以上を達成し、効率最適化に重点を置く従来のATSCアルゴリズムとATSCアルゴリズムを上回っている。
交通効率に関しては、従来のATSCと比較して待ち時間は18%削減されるが、D3QNフレームワークを統合するDRLベースのATSCアルゴリズムに比べてわずかに増加(0.64%)している。
この限界的な増加は、効率と安全性や脱炭といった他の目的とのトレードオフを示唆している。
さらに,提案手法は,特に交通負荷の高いシナリオにおいて,3つの目的のすべてに対して優れた性能を示す。
これらの知見は,現実の交通状況における信号制御戦略を最適化するための実用的で効果的なソリューションを提供することによって,交通制御システムの進歩に寄与する。
関連論文リスト
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - Performance Comparison of Deep RL Algorithms for Mixed Traffic Cooperative Lane-Changing [3.4761212729163304]
車線変更は、交通環境の複雑なダイナミクスと高い不確実性のため、コネクテッドおよび自動走行車(CAV)にとって難しいシナリオである。
本研究では,HV(Human-driven Vehicle)の不確かさと,HVとCAVの微視的相互作用を両立させることにより,現在のCLCMT機構を強化する。
4つのDRLアルゴリズムの性能比較により,DDPG,TD3,SAC,PPOアルゴリズムが交通環境の不確実性に対処可能であることが示された。
論文 参考訳(メタデータ) (2024-06-25T07:49:25Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
交通のダイナミクスと異なるIoVアプリケーションの異種要求は、既存のほとんどの研究では考慮されていない。
本稿では,ハイブリッド交通制御方式とPPO法を併用して検討する。
論文 参考訳(メタデータ) (2022-03-05T10:54:05Z) - Efficient Pressure: Improving efficiency for signalized intersections [24.917612761503996]
交通信号制御(TSC)の問題を解決するために,強化学習(RL)が注目されている。
既存のRLベースの手法は、計算資源の面でコスト効率が良くなく、従来の手法よりも堅牢ではないため、ほとんどデプロイされない。
我々は,RTLに基づくアプローチに基づいて,トレーニングを減らし,複雑さを低減したTSCの適応制御系を構築する方法を示す。
論文 参考訳(メタデータ) (2021-12-04T13:49:58Z) - Network-wide traffic signal control optimization using a multi-agent
deep reinforcement learning [20.385286762476436]
非効率な交通制御は、交通渋滞やエネルギー廃棄物などの多くの問題を引き起こす可能性がある。
本論文では,交通信号間の協調性を高めることで最適制御を実現するマルチエージェント強化学習手法であるKS-DDPGを提案する。
論文 参考訳(メタデータ) (2021-04-20T12:53:08Z) - Surrogate-assisted cooperative signal optimization for large-scale
traffic networks [6.223837701805064]
本研究では,サロゲート支援協調信号最適化(SCSO)手法を提案する。
ニューマン・ファスト・アルゴリズムを用いて,分散アルゴリズムを分解器,代理モデル,具体的SCSOアルゴリズムとして修正した。
その有効性と有効性を評価するため、実際の交通ネットワークに基づいて、クロスロードとTジャンクションを含む大規模交通ネットワークを生成する。
論文 参考訳(メタデータ) (2021-03-03T01:03:57Z) - Multi-Agent Reinforcement Learning in NOMA-aided UAV Networks for
Cellular Offloading [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T20:22:05Z) - NOMA in UAV-aided cellular offloading: A machine learning approach [59.32570888309133]
複数の無人航空機(UAV)によるセルローディングのための新しい枠組みの提案
非直交多重アクセス(NOMA)技術は、無線ネットワークのスペクトル効率をさらに向上するために、各UAVに採用されている。
相互深いQ-network (MDQN) アルゴリズムは,UAVの最適3次元軌道と電力配分を共同で決定するために提案される。
論文 参考訳(メタデータ) (2020-10-18T17:38:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。