Terahertz Quantum Imaging
- URL: http://arxiv.org/abs/2408.02531v1
- Date: Mon, 5 Aug 2024 14:59:29 GMT
- Title: Terahertz Quantum Imaging
- Authors: Mirco Kutas, Felix Riexinger, Jens Klier, Daniel Molter, Georg von Freymann,
- Abstract summary: We demonstrate amplitude- and phase-sensitive imaging in the terahertz spectral region (1.5 THz center frequency)
As a result, terahertz spectral information can be reliably detected with a standard CMOS camera without cooling.
Our results are in good agreement with numerical simulations of the imaging process and demonstrate the huge potential of this method to address otherwise challenging spectral regions where cameras do not exist.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum imaging with undetected photons spatially transfers amplitude and phase information from one spectral region of physical interest to another spectral region that is easy to detect. The photon energy of the two spectral regions can, in principle, be separated by several orders of magnitude. However, quantum imaging with undetected photons has so far only been demonstrated in spectral regions of similar order of magnitude in frequency (and for which cameras are commercially available). Here, we demonstrate amplitude- and phase-sensitive imaging in the terahertz spectral region (1.5 THz center frequency) by detecting only visible photons (center wavelength 662.2 nm, 452.7 THz center frequency) more than two orders of magnitude apart. As a result, terahertz spectral information can be reliably detected with a standard CMOS camera without cooling, achieving a spatial resolution close to the wavelength. By taking advantage of quantum distillation in a nonlinear interferometer, the influence of ubiquitous thermal terahertz photons can be neglected. Our results are in good agreement with numerical simulations of the imaging process and demonstrate the huge potential of this method to address otherwise challenging spectral regions where cameras do not exist.
Related papers
- Phase-Subtractive Interference and Noise-Resistant Quantum Imaging with Two Undetected Photons [0.0]
We present a quantum interference phenomenon in which four-photon quantum states generated by two independent sources are used to create a two-photon interference pattern.
Contrary to the common perception, the interference pattern can be made fully independent of phases acquired by the photons detected to construct it.
arXiv Detail & Related papers (2024-06-09T05:36:17Z) - Super-resolution of ultrafast pulses via spectral inversion [0.0]
We experimentally demonstrate a spectroscopic super-resolution method aimed at broadband light (10s to 100s of GHz)
We study the paradigmatic problem of estimating a small separation between two incoherent spectral features of equal brightness, with a small number of photons per coherence time.
The setup is based on an actively stabilized Mach-Zehnder-type interferometer with electro-optic time lenses and passive spectral dispersers implementing the inversion.
arXiv Detail & Related papers (2024-03-18T12:21:37Z) - Single photon optical bistability [55.2480439325792]
We investigate the bistability in a small Fabry-Perot interferometer (FPI) with the optical wavelength size cavity, the nonlinear Kerr medium and only a few photons, on average, excited by the external quantum field.
Multiple stationary states of the FPI cavity field with different spectra are possible at realistic conditions, for example, in the FPI with the photonic crystal cavity and the semiconductor-doped glass nonlinear medium.
arXiv Detail & Related papers (2023-04-15T10:44:51Z) - Quantum fluctuations in the small Fabry-Perot interferometer [77.34726150561087]
We study the small, of the size of the order of the wavelength, interferometer with the main mode excited by a quantum field from a nano-LED or a laser.
We find the field and the photon number fluctuation spectra inside and outside the interferometer.
Results help the study, design, manufacture, and use small elements of quantum optical integrated circuits.
arXiv Detail & Related papers (2022-12-27T10:02:25Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Achieving two-dimensional optical spectroscopy with temporal and
spectral resolution using quantum entangled three photons [0.0]
Time-resolved entangled photon spectroscopy with monochromatic pumping is investigated.
The signal is not subject to Fourier limitations on the joint temporal and spectral resolution.
It is expected to be useful for investigating complex molecular systems in which multiple electronic states are present within a narrow energy range.
arXiv Detail & Related papers (2021-03-08T03:56:10Z) - Quantum-inspired terahertz spectroscopy with visible photons [0.0]
Terahertz spectroscopy allows for identifying different isomers of materials, for drug discrimination and for detecting hazardous substances.
Despite these useful applications, terahertz spectroscopy suffers from the still technically demanding detection of terahertz radiation.
Here, we report on the first demonstration of terahertz spectroscopy, in which the sample interacts with terahertz idler photons.
arXiv Detail & Related papers (2020-11-05T11:11:47Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Frequency-Domain Quantum Interference with Correlated Photons from an
Integrated Microresonator [96.25398432840109]
We report frequency-domain Hong-Ou-Mandel interference with spectrally distinct photons generated from a chip-based microresonator.
Our work establishes four-wave mixing as a tool for selective high-fidelity two-photon operations in the frequency domain.
arXiv Detail & Related papers (2020-03-14T01:48:39Z) - Quantum optical synthesis in 2D time-frequency space [0.0]
Conventional optical synthesis relies on the Fourier transform of light fields between time and frequency domains in one-dimensional space.
We carry out an experimental demonstration by manipulating the two-photon probability distribution of a biphoton in two-dimensional time and frequency space.
Our approach opens up a new pathway to tailor the temporal characteristics of a biphoton wave packet with high dimensional quantum-mechanical treatment.
arXiv Detail & Related papers (2020-02-19T14:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.