論文の概要: Doubly Stochastic Adaptive Neighbors Clustering via the Marcus Mapping
- arxiv url: http://arxiv.org/abs/2408.02932v2
- Date: Mon, 12 Aug 2024 09:48:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 20:04:01.838426
- Title: Doubly Stochastic Adaptive Neighbors Clustering via the Marcus Mapping
- Title(参考訳): Marcus Mappingによる二重確率適応近傍クラスタリング
- Authors: Jinghui Yuan, Chusheng Zeng, Fangyuan Xie, Zhe Cao, Mulin Chen, Rong Wang, Feiping Nie, Yuan Yuan,
- Abstract要約: クラスタリングは機械学習とデータサイエンスにおける基本的なタスクであり、類似性グラフベースのクラスタリングはこの領域において重要なアプローチである。
マーカスマッピングと最適輸送の関係について検討する。
マーカス写像が特定の種類の最適輸送問題を解くことを証明し、マーカス写像によるこの問題の解法が最適輸送法を直接適用するよりも効率的であることを証明した。
- 参考スコア(独自算出の注目度): 56.57574396804837
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering is a fundamental task in machine learning and data science, and similarity graph-based clustering is an important approach within this domain. Doubly stochastic symmetric similarity graphs provide numerous benefits for clustering problems and downstream tasks, yet learning such graphs remains a significant challenge. Marcus theorem states that a strictly positive symmetric matrix can be transformed into a doubly stochastic symmetric matrix by diagonal matrices. However, in clustering, learning sparse matrices is crucial for computational efficiency. We extend Marcus theorem by proposing the Marcus mapping, which indicates that certain sparse matrices can also be transformed into doubly stochastic symmetric matrices via diagonal matrices. Additionally, we introduce rank constraints into the clustering problem and propose the Doubly Stochastic Adaptive Neighbors Clustering algorithm based on the Marcus Mapping (ANCMM). This ensures that the learned graph naturally divides into the desired number of clusters. We validate the effectiveness of our algorithm through extensive comparisons with state-of-the-art algorithms. Finally, we explore the relationship between the Marcus mapping and optimal transport. We prove that the Marcus mapping solves a specific type of optimal transport problem and demonstrate that solving this problem through Marcus mapping is more efficient than directly applying optimal transport methods.
- Abstract(参考訳): クラスタリングは機械学習とデータサイエンスにおける基本的なタスクであり、類似性グラフベースのクラスタリングはこの領域において重要なアプローチである。
二重確率対称類似性グラフはクラスタリング問題や下流タスクに多くの利点をもたらすが、そのようなグラフの学習は依然として大きな課題である。
マーカスの定理は、厳密な正対称行列は対角行列によって二重確率対称行列に変換できると述べている。
しかし,クラスタリングでは,スパース行列の学習が計算効率に不可欠である。
マーカスの定理は、あるスパース行列が対角行列を介して二重確率対称行列に変換可能であることを示すマーカス写像によって拡張される。
さらに,クラスタリング問題にランク制約を導入し,Marcus Mapping (ANCMM) に基づくDouubly Stochastic Adaptive Neighbors Clusteringアルゴリズムを提案する。
これにより、学習したグラフが、望まれる数のクラスタに自然に分割されることが保証される。
我々は、最先端のアルゴリズムと広範囲に比較して、アルゴリズムの有効性を検証する。
最後に、マーカス写像と最適輸送の関係について検討する。
マーカス写像が特定の種類の最適輸送問題を解くことを証明し、マーカス写像によるこの問題の解法が最適輸送法を直接適用するよりも効率的であることを証明した。
関連論文リスト
- Understanding Matrix Function Normalizations in Covariance Pooling through the Lens of Riemannian Geometry [63.694184882697435]
グローバル共分散プーリング(GCP)は、高レベルの表現の2階統計を利用して、ディープニューラルネットワーク(DNN)の性能を向上させることが実証されている。
論文 参考訳(メタデータ) (2024-07-15T07:11:44Z) - On Sinkhorn's Algorithm and Choice Modeling [6.43826005042477]
その結果, 最大推定問題は, 古典的行列バランス問題と, 対象列と列の和との等価性を示す。
この視点は、一見無関係な2つの研究領域の間の扉を開く。
これらの接続からインスピレーションを得て、シンクホーンのアルゴリズムの研究において重要なオープンな問題を解く。
論文 参考訳(メタデータ) (2023-09-30T05:20:23Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
クロスモーダルハッシュは、大規模なマルチメディア検索問題を解決する方法として成功している。
これらの問題に対処する新しい非対称スケーラブルクロスモーダルハッシュ(ASCMH)を提案する。
我々のASCMHは、最先端のクロスモーダルハッシュ法よりも精度と効率の点で優れています。
論文 参考訳(メタデータ) (2022-07-26T04:38:47Z) - Skew-Symmetric Adjacency Matrices for Clustering Directed Graphs [5.301300942803395]
カットベースの有向グラフ(グラフ)クラスタリングは、しばしばクラスタ内あるいはクラスタ間の疎結合を見つけることに焦点を当てる。
フローベースのクラスタリングでは、クラスタ間のエッジは一方向を向く傾向にあり、マイグレーションデータ、フードウェブ、トレーディングデータに見出されている。
論文 参考訳(メタデータ) (2022-03-02T20:07:04Z) - Robust Geometric Metric Learning [17.855338784378]
本稿では,計量学習問題に対する新しいアルゴリズムを提案する。
その後、Robust Geometric Metric Learning (RGML)と呼ばれる一般的な手法が研究される。
RGMLのパフォーマンスは、実際のデータセット上で保証される。
論文 参考訳(メタデータ) (2022-02-23T14:55:08Z) - Learning a Compressive Sensing Matrix with Structural Constraints via
Maximum Mean Discrepancy Optimization [17.104994036477308]
本稿では,圧縮センシング関連回復問題に対する測定行列を得るための学習に基づくアルゴリズムを提案する。
ニューラルネットワーク関連のトピックにおけるこのようなメトリクスの最近の成功は、機械学習に基づく問題の解決策を動機付けている。
論文 参考訳(メタデータ) (2021-10-14T08:35:54Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
マルチビュースペクトルクラスタリングは、データ間の固有のクラスタ構造を効果的に明らかにすることができる。
本稿では,高次最適近傍ラプラシア行列を学習するマルチビュースペクトルクラスタリングアルゴリズムを提案する。
提案アルゴリズムは, 1次ベースと高次ベースの両方の線形結合の近傍を探索し, 最適ラプラシア行列を生成する。
論文 参考訳(メタデータ) (2020-08-31T12:28:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。