Matrix Multiplication on Quantum Computer
- URL: http://arxiv.org/abs/2408.03085v1
- Date: Tue, 6 Aug 2024 10:25:02 GMT
- Title: Matrix Multiplication on Quantum Computer
- Authors: Jiaqi Yao, Ding Liu,
- Abstract summary: We design optimized quantum adders and multipliers based on Quantum Fourier Transform (QFT)
We construct a basic universal quantum matrix multiplication and extend it to the Strassen algorithm.
- Score: 11.527403788898457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces an innovative and practical approach to universal quantum matrix multiplication. We designed optimized quantum adders and multipliers based on Quantum Fourier Transform (QFT), which significantly reduced the number of gates used compared to classical adders and multipliers. Subsequently, we construct a basic universal quantum matrix multiplication and extend it to the Strassen algorithm. We conduct comparative experiments to analyze the performance of the quantum matrix multiplication and evaluate the acceleration provided by the optimized quantum adder and multiplier. Furthermore, we investigate the advantages and disadvantages of the quantum Strassen algorithm compared to basic quantum matrix multiplication.
Related papers
- A Quantum Approximate Optimization Method For Finding Hadamard Matrices [0.0]
We propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer.
We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
arXiv Detail & Related papers (2024-08-15T06:25:50Z) - Multi-target quantum compilation algorithm [0.0]
In quantum computing, quantum compilation involves transforming information from a target unitary into a trainable unitary represented by a quantum circuit.
We develop a multi-target quantum compilation algorithm to enhance the performance and flexibility of simulating multiple quantum systems.
arXiv Detail & Related papers (2024-07-01T06:47:24Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Polynomial-depth quantum algorithm for computing matrix determinant [46.13392585104221]
We propose an algorithm for calculating the determinant of a square matrix, and construct a quantum circuit realizing it.
Each row of the matrix is encoded as a pure state of some quantum system.
The admitted matrix is therefore arbitrary up to the normalization of quantum states of those systems.
arXiv Detail & Related papers (2024-01-29T23:23:27Z) - Improved Quantum Algorithms for Eigenvalues Finding and Gradient Descent [0.0]
Block encoding is a key ingredient in the recently developed quantum signal processing that forms a unifying framework for quantum algorithms.
In this article, we utilize block encoding to substantially enhance two previously proposed quantum algorithms.
We show how to extend our proposed method to different contexts, including matrix inversion and multiple eigenvalues estimation.
arXiv Detail & Related papers (2023-12-22T15:59:03Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Explicit Quantum Circuits for Block Encodings of Certain Sparse Matrices [4.2389474761558406]
We show how efficient quantum circuits can be explicitly constructed for some well-structured matrices.
We also provide implementations of these quantum circuits in sparse strategies.
arXiv Detail & Related papers (2022-03-19T03:50:16Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - Quantum ensemble of trained classifiers [2.048335092363436]
A quantum computer is capable of representing an exponentially large set of states, according to the number of qubits available.
Quantum machine learning explores the potential of quantum computing to enhance machine learning algorithms.
arXiv Detail & Related papers (2020-07-18T01:01:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.