Identifying treatment response subgroups in observational time-to-event data
- URL: http://arxiv.org/abs/2408.03463v3
- Date: Fri, 18 Oct 2024 07:32:18 GMT
- Title: Identifying treatment response subgroups in observational time-to-event data
- Authors: Vincent Jeanselme, Chang Ho Yoon, Fabian Falck, Brian Tom, Jessica Barrett,
- Abstract summary: Our work introduces a novel, outcome-guided method for identifying treatment response subgroups in observational studies.
Our approach positions itself in between individualised and average treatment effect estimation.
In experiments, our approach significantly outperforms the current state-of-the-art method for outcome-guided subgroup analysis in both randomised and observational treatment regimes.
- Score: 2.176207087460772
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying patient subgroups with different treatment responses is an important task to inform medical recommendations, guidelines, and the design of future clinical trials. Existing approaches for subgroup analysis primarily rely on Randomised Controlled Trials (RCTs), in which treatment assignment is randomised. RCTs' patient cohorts are often constrained by cost, rendering them not representative of the heterogeneity of patients likely to receive treatment in real-world clinical practice. When applied to observational studies, subgroup analysis approaches suffer from significant statistical biases particularly because of the non-randomisation of treatment. Our work introduces a novel, outcome-guided method for identifying treatment response subgroups in observational studies. Our approach assigns each patient to a subgroup associated with two time-to-event distributions: one under treatment and one under control regime. It hence positions itself in between individualised and average treatment effect estimation. The assumptions of our model result in a simple correction of the statistical bias from treatment non-randomisation through inverse propensity weighting. In experiments, our approach significantly outperforms the current state-of-the-art method for outcome-guided subgroup analysis in both randomised and observational treatment regimes.
Related papers
- Detecting critical treatment effect bias in small subgroups [11.437076464287822]
We propose a novel strategy to benchmark observational studies beyond the average treatment effect.
First, we design a statistical test for the null hypothesis that the treatment effects estimated from the two studies, conditioned on a set of relevant features, differ up to some tolerance.
We then estimate anally valid lower bound on the maximum bias strength for any subgroup in the observational study.
arXiv Detail & Related papers (2024-04-29T17:44:28Z) - Estimating treatment effects from single-arm trials via latent-variable
modeling [14.083487062917085]
Single-arm trials, where all patients belong to the treatment group, can be a viable alternative but require access to an external control group.
We propose an identifiable deep latent-variable model for this scenario.
Our results show improved performance both for direct treatment effect estimation as well as for effect estimation via patient matching.
arXiv Detail & Related papers (2023-11-06T10:12:54Z) - The R.O.A.D. to precision medicine [5.877778007271621]
We propose a prognostic stratum matching framework that addresses the deficiencies of Randomized trial data subgroup analysis.
We apply our framework to observational data of patients with gastrointestinal stromal tumors (GIST) and validated the OPTs in an external cohort.
arXiv Detail & Related papers (2023-11-03T03:08:15Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - BITES: Balanced Individual Treatment Effect for Survival data [0.0]
Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine.
Time-to-event data is rarely used for treatment optimization.
We suggest an approach named BITES, which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network.
arXiv Detail & Related papers (2022-01-05T10:39:31Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - Double machine learning for sample selection models [0.12891210250935145]
This paper considers the evaluation of discretely distributed treatments when outcomes are only observed for a subpopulation due to sample selection or outcome attrition.
We make use of (a) Neyman-orthogonal, doubly robust, and efficient score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias.
arXiv Detail & Related papers (2020-11-30T19:40:21Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems.
Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE)
This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses.
arXiv Detail & Related papers (2020-06-14T14:50:02Z) - Estimating Counterfactual Treatment Outcomes over Time Through
Adversarially Balanced Representations [114.16762407465427]
We introduce the Counterfactual Recurrent Network (CRN) to estimate treatment effects over time.
CRN uses domain adversarial training to build balancing representations of the patient history.
We show how our model achieves lower error in estimating counterfactuals and in choosing the correct treatment and timing of treatment.
arXiv Detail & Related papers (2020-02-10T20:47:36Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.