Estimating treatment effects from single-arm trials via latent-variable
modeling
- URL: http://arxiv.org/abs/2311.03002v2
- Date: Mon, 4 Mar 2024 17:07:24 GMT
- Title: Estimating treatment effects from single-arm trials via latent-variable
modeling
- Authors: Manuel Haussmann, Tran Minh Son Le, Viivi Halla-aho, Samu Kurki, Jussi
V. Leinonen, Miika Koskinen, Samuel Kaski, Harri L\"ahdesm\"aki
- Abstract summary: Single-arm trials, where all patients belong to the treatment group, can be a viable alternative but require access to an external control group.
We propose an identifiable deep latent-variable model for this scenario.
Our results show improved performance both for direct treatment effect estimation as well as for effect estimation via patient matching.
- Score: 14.083487062917085
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Randomized controlled trials (RCTs) are the accepted standard for treatment
effect estimation but they can be infeasible due to ethical reasons and
prohibitive costs. Single-arm trials, where all patients belong to the
treatment group, can be a viable alternative but require access to an external
control group. We propose an identifiable deep latent-variable model for this
scenario that can also account for missing covariate observations by modeling
their structured missingness patterns. Our method uses amortized variational
inference to learn both group-specific and identifiable shared latent
representations, which can subsequently be used for {\em (i)} patient matching
if treatment outcomes are not available for the treatment group, or for {\em
(ii)} direct treatment effect estimation assuming outcomes are available for
both groups. We evaluate the model on a public benchmark as well as on a data
set consisting of a published RCT study and real-world electronic health
records. Compared to previous methods, our results show improved performance
both for direct treatment effect estimation as well as for effect estimation
via patient matching.
Related papers
- Identifying treatment response subgroups in observational time-to-event data [2.176207087460772]
Our work introduces a novel, outcome-guided method for identifying treatment response subgroups in observational studies.
Our approach positions itself in between individualised and average treatment effect estimation.
In experiments, our approach significantly outperforms the current state-of-the-art method for outcome-guided subgroup analysis in both randomised and observational treatment regimes.
arXiv Detail & Related papers (2024-08-06T22:38:14Z) - Counterfactual Data Augmentation with Contrastive Learning [27.28511396131235]
We introduce a model-agnostic data augmentation method that imputes the counterfactual outcomes for a selected subset of individuals.
We use contrastive learning to learn a representation space and a similarity measure such that in the learned representation space close individuals identified by the learned similarity measure have similar potential outcomes.
This property ensures reliable imputation of counterfactual outcomes for the individuals with close neighbors from the alternative treatment group.
arXiv Detail & Related papers (2023-11-07T00:36:51Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Assessment of Treatment Effect Estimators for Heavy-Tailed Data [70.72363097550483]
A central obstacle in the objective assessment of treatment effect (TE) estimators in randomized control trials (RCTs) is the lack of ground truth (or validation set) to test their performance.
We provide a novel cross-validation-like methodology to address this challenge.
We evaluate our methodology across 709 RCTs implemented in the Amazon supply chain.
arXiv Detail & Related papers (2021-12-14T17:53:01Z) - Sequential Deconfounding for Causal Inference with Unobserved
Confounders [18.586616164230566]
We develop the Sequential Deconfounder, a method that enables estimating individualized treatment effects over time.
This is the first deconfounding method that can be used in a general sequential setting.
We prove that using our method yields unbiased estimates of individualized treatment responses over time.
arXiv Detail & Related papers (2021-04-16T09:56:39Z) - Evaluating (weighted) dynamic treatment effects by double machine
learning [0.12891210250935145]
We consider evaluating the causal effects of dynamic treatments in a data-driven way under a selection-on-observables assumption.
We make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications.
We demonstrate that the estimators are regularityally normal and $sqrtn$-consistent under specific conditions.
arXiv Detail & Related papers (2020-12-01T09:55:40Z) - Double machine learning for sample selection models [0.12891210250935145]
This paper considers the evaluation of discretely distributed treatments when outcomes are only observed for a subpopulation due to sample selection or outcome attrition.
We make use of (a) Neyman-orthogonal, doubly robust, and efficient score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias.
arXiv Detail & Related papers (2020-11-30T19:40:21Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.