論文の概要: A Predictive Approach for Selecting the Best Quantum Solver for an Optimization Problem
- arxiv url: http://arxiv.org/abs/2408.03613v1
- Date: Wed, 7 Aug 2024 08:14:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-08 13:34:00.756768
- Title: A Predictive Approach for Selecting the Best Quantum Solver for an Optimization Problem
- Title(参考訳): 最適化問題に対する最適量子解法選択のための予測的アプローチ
- Authors: Deborah Volpe, Nils Quetschlich, Mariagrazia Graziano, Giovanna Turvani, Robert Wille,
- Abstract要約: 教師付き機械学習に基づく予測解法選択手法を提案する。
70%以上の場合において、最良の解法が選択され、約90%の場合には、上位2の解法が選択される。
この探索は、量子ソルバ選択における機械学習の可能性を証明し、その自動化の基礎を定めている。
- 参考スコア(独自算出の注目度): 2.9730678241643815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging quantum computers for optimization problems holds promise across various application domains. Nevertheless, utilizing respective quantum computing solvers requires describing the optimization problem according to the Quadratic Unconstrained Binary Optimization (QUBO) formalism and selecting a proper solver for the application of interest with a reasonable setting. Both demand significant proficiency in quantum computing, QUBO formulation, and quantum solvers, a background that usually cannot be assumed by end users who are domain experts rather than quantum computing specialists. While tools aid in QUBO formulations, support for selecting the best-solving approach remains absent. This becomes even more challenging because selecting the best solver for a problem heavily depends on the problem itself. In this work, we are accepting this challenge and propose a predictive selection approach, which aids end users in this task. To this end, the solver selection task is first formulated as a classification task that is suitable to be solved by supervised machine learning. Based on that, we then propose strategies for adjusting solver parameters based on problem size and characteristics. Experimental evaluations, considering more than 500 different QUBO problems, confirm the benefits of the proposed solution. In fact, we show that in more than 70% of the cases, the best solver is selected, and in about 90% of the problems, a solver in the top two, i.e., the best or its closest suboptimum, is selected. This exploration proves the potential of machine learning in quantum solver selection and lays the foundations for its automation, broadening access to quantum optimization for a wider range of users.
- Abstract(参考訳): 最適化問題に対する量子コンピュータの活用は、様々なアプリケーション領域における約束を果たす。
それでも、各量子コンピューティングの解法を利用するには、準非制約バイナリ最適化(QUBO)の定式化に従って最適化問題を記述し、適切な設定で関心を持つための適切な解法を選択する必要がある。
どちらも量子コンピューティング、QUBOの定式化、量子解法など、量子コンピューティングの専門家というよりはドメインの専門家であるエンドユーザーによって想定できない背景を必要とする。
ツールがQUBOの定式化を支援する一方で、最良の解決方法を選択するためのサポートはいまだに存在しない。
問題に対する最良の解法を選択することは、問題自体に大きく依存するため、これはさらに難しくなります。
本研究では,この課題を受け入れ,この課題におけるエンドユーザを支援する予測的選択手法を提案する。
この目的のために、まず、教師付き機械学習により解決するのに適した分類タスクとして解決者選択タスクを定式化する。
そこで本研究では,問題の大きさと特性に基づいて解法パラメータを調整する手法を提案する。
500以上の異なるQUBO問題を考慮し,提案手法の利点を検証した。
実際、70%以上のケースにおいて、最良解法が選択され、約90%の場合には、最良解法、すなわち、最良解法または最も近い準最適解法が選択される。
この探索は、量子ソルバ選択における機械学習の可能性を証明し、その自動化の基礎を築き、より広い範囲のユーザに対する量子最適化へのアクセスを拡大する。
関連論文リスト
- Tensor Network Based HOBO Solver [0.0]
提案した解法は、定式化の観点から将来の拡張に有意義な可能性を持つ有望なツールである。
この解法は、量子コンピューティングにおける幅広い応用の有望な可能性を持っている。
論文 参考訳(メタデータ) (2024-07-23T00:33:34Z) - CRUISE on Quantum Computing for Feature Selection in Recommender Systems [9.703634723062127]
我々は、推奨アルゴリズムにおける特徴選択問題に対処するためにQuantum Annealersを使用します。
対実解析を取り入れることで、項目ベースKNN推薦アルゴリズムの性能を大幅に改善する。
論文 参考訳(メタデータ) (2024-07-03T06:34:56Z) - Towards an Automatic Framework for Solving Optimization Problems with Quantum Computers [2.9730678241643815]
従来の最適化問題を量子解法に自動的に変換するフレームワークが提案されている。
このフレームワークは、ソリューションの妥当性と品質を分析するための手段を提供する。
これは量子コンピューティングソリューションの自動化に向けた大きな進歩を表している。
論文 参考訳(メタデータ) (2024-06-18T17:56:10Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Recommending Solution Paths for Solving Optimization Problems with
Quantum Computing [4.306566710489809]
最適解パスを特定し,推奨するフレームワークを提案する。
最先端のハイブリッドアルゴリズム、エンコーディングおよび分解技術はモジュラー方式で統合することができる。
選択した選択肢の集合に対する我々のアプローチの実証と検証を行い、キャパシタイトされた車両ルーティング問題に対するその適用例を示す。
論文 参考訳(メタデータ) (2022-12-21T15:55:43Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
量子近似最適化アルゴリズム(QAOAs)は、量子マシンのパワーを利用し、断熱進化の精神を継承する。
量子マシンを用いて任意の大規模MaxCut問題を解くためにQAOA-in-QAOA(textQAOA2$)を提案する。
提案手法は,大規模最適化問題におけるQAOAsの能力を高めるために,他の高度な戦略にシームレスに組み込むことができる。
論文 参考訳(メタデータ) (2022-05-24T03:49:10Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。