論文の概要: Scalable and Adaptive Spectral Embedding for Attributed Graph Clustering
- arxiv url: http://arxiv.org/abs/2408.05765v1
- Date: Sun, 11 Aug 2024 12:57:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 15:37:52.231921
- Title: Scalable and Adaptive Spectral Embedding for Attributed Graph Clustering
- Title(参考訳): 分散グラフクラスタリングのためのスケーラブルで適応的なスペクトル埋め込み
- Authors: Yunhui Liu, Tieke He, Qing Wu, Tao Zheng, Jianhua Zhao,
- Abstract要約: 本稿では,パラメータ学習を伴わない単純な属性グラフクラスタリング手法であるSASEを紹介する。
これらの設計により、SASEはグローバルクラスタ構造を効果的にキャプチャするだけでなく、グラフサイズに対して線形時間と空間の複雑さを示す。
例えば、169Kノードと1.17Mエッジを持つArXivデータセットでは、SASEはACCの6.9%の改善と、ランナアップであるS3GCと比較して5.87タイムのスピードアップを実現している。
- 参考スコア(独自算出の注目度): 33.2644557389611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attributed graph clustering, which aims to group the nodes of an attributed graph into disjoint clusters, has made promising advancements in recent years. However, most existing methods face challenges when applied to large graphs due to the expensive computational cost and high memory usage. In this paper, we introduce Scalable and Adaptive Spectral Embedding (SASE), a simple attributed graph clustering method devoid of parameter learning. SASE comprises three main components: node features smoothing via $k$-order simple graph convolution, scalable spectral clustering using random Fourier features, and adaptive order selection. With these designs, SASE not only effectively captures global cluster structures but also exhibits linear time and space complexity relative to the graph size. Empirical results demonstrate the superiority of SASE. For example, on the ArXiv dataset with 169K nodes and 1.17M edges, SASE achieves a 6.9\% improvement in ACC and a $5.87\times$ speedup compared to the runner-up, S3GC.
- Abstract(参考訳): 属性グラフのノードを非結合クラスタにグループ化することを目的とした分散グラフクラスタリングは,近年,有望な進歩を遂げている。
しかし、既存のほとんどの手法は、高価な計算コストと高いメモリ使用量のために、大きなグラフに適用する際の課題に直面している。
本稿では,パラメータ学習を伴わない単純な属性グラフクラスタリング手法であるScalable and Adaptive Spectral Embedding (SASE)を紹介する。
SASEは3つの主要なコンポーネントで構成されている。ノード機能は$k$の単純なグラフ畳み込み、ランダムなフーリエ機能を使ったスケーラブルなスペクトルクラスタリング、適応順序選択である。
これらの設計により、SASEはグローバルクラスタ構造を効果的にキャプチャするだけでなく、グラフサイズに対して線形時間と空間の複雑さを示す。
経験的結果はSASEの優位性を示している。
例えば、169Kノードと1.17Mエッジを持つArXivデータセットでは、SASEはACCの6.9\%の改善と、ランナーアップであるS3GCと比較して5.87\times$スピードアップを実現している。
関連論文リスト
- Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
ノード分類タスクにおける大規模グラフの利用は、グラフニューラルネットワーク(GNN)の現実的な応用を妨げる
本稿では,GNNのグラフコアセットについて検討し,スペクトル埋め込みに基づくエゴグラフの選択により相互依存の問題を回避する。
我々のスペクトルグレディグラフコアセット(SGGC)は、数百万のノードを持つグラフにスケールし、モデル事前学習の必要性を排除し、低ホモフィリーグラフに適用する。
論文 参考訳(メタデータ) (2024-05-27T17:52:12Z) - Graph Sparsification via Mixture of Graphs [67.40204130771967]
そこで我々はMixture-of-Graphs (MoG)を導入し、各ノードに対して動的に調整されたプルーニングソリューションを選択する。
MoGには複数のスパシファイアの専門家が組み込まれており、それぞれが独自のスパーシリティレベルとプルーニング基準によって特徴付けられ、各ノードに対して適切な専門家を選択する。
5つのGNNを備えた4つの大規模OGBデータセットと2つのスーパーピクセルデータセットの実験により、MoGはより高い空間レベルのサブグラフを識別することを示した。
論文 参考訳(メタデータ) (2024-05-23T07:40:21Z) - MeanCut: A Greedy-Optimized Graph Clustering via Path-based Similarity
and Degree Descent Criterion [0.6906005491572401]
スペクトルクラスタリングは、優れたパフォーマンス、簡単な実装、強力な適応性のために人気があり、魅力的です。
我々は,MeanCutを目的関数として提案し,非破壊グラフ分割の次数降下順で厳密に最適化する。
本アルゴリズムの有効性は,実世界のベンチマークによる検証と顔認識の適用によって実証される。
論文 参考訳(メタデータ) (2023-12-07T06:19:39Z) - Latent Random Steps as Relaxations of Max-Cut, Min-Cut, and More [30.919536115917726]
クラスタリングと単純化を統一する非負行列分解に基づく確率モデルを提案する。
ハードクラスタリングをソフトクラスタリングに緩和することにより、ハードクラスタリングの潜在的な問題をトラクタブルクラスタに緩和する。
論文 参考訳(メタデータ) (2023-08-12T02:47:57Z) - One-step Bipartite Graph Cut: A Normalized Formulation and Its
Application to Scalable Subspace Clustering [56.81492360414741]
両部グラフの1ステップ正規化カットを、特に線形時間複雑性で実施する方法を示す。
本稿では、まず、正規化制約付き一段階二分グラフカット基準を特徴付けるとともに、そのトレース問題に対する等価性を理論的に証明する。
このカット基準を、適応アンカー学習、二部グラフ学習、一段階正規化二部グラフ分割を同時にモデル化するスケーラブルなサブスペースクラスタリングアプローチに拡張する。
論文 参考訳(メタデータ) (2023-05-12T11:27:20Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
我々は、グラフ畳み込みネットワーク(GCN)を構築するために使用される生成グラフモデルを導入することにより、グラフに非グラフデータセットを変換する方法を示す。
アンカーによって構築された二部グラフは、データの背後にある高レベル情報を利用するために動的に更新される。
理論的には、単純な更新が退化につながることを証明し、それに従って特定の戦略が設計される。
論文 参考訳(メタデータ) (2021-11-12T07:08:13Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
我々は,自己教師型コントラストグラフクラスタリング(SCAGC)という,新たな属性グラフクラスタリングネットワークを提案する。
SCAGCでは,不正確なクラスタリングラベルを活用することで,ノード表現学習のための自己教師付きコントラスト損失を設計する。
OOSノードでは、SCAGCはクラスタリングラベルを直接計算できる。
論文 参考訳(メタデータ) (2021-10-15T03:25:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Pseudoinverse Graph Convolutional Networks: Fast Filters Tailored for
Large Eigengaps of Dense Graphs and Hypergraphs [0.0]
Graph Convolutional Networks (GCNs) は、グラフベースのデータセットで半教師付き分類を行うツールとして成功している。
本稿では,三部フィルタ空間が高密度グラフを対象とする新しいGCN変種を提案する。
論文 参考訳(メタデータ) (2020-08-03T08:48:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。