論文の概要: Quantum Gradient Class Activation Map for Model Interpretability
- arxiv url: http://arxiv.org/abs/2408.05899v1
- Date: Mon, 12 Aug 2024 02:45:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 14:55:41.229661
- Title: Quantum Gradient Class Activation Map for Model Interpretability
- Title(参考訳): モデル解釈可能性のための量子勾配クラス活性化マップ
- Authors: Hsin-Yi Lin, Huan-Hsin Tseng, Samuel Yen-Chi Chen, Shinjae Yoo,
- Abstract要約: 本研究は、アクティベーションマッピングに変分量子回路(VQC)を用い、モデルの透明性を高め、QGrad-CAM(Quantum Gradient Class Activation Map)を導入することを提案する。
実験結果から,画像データセットと音声データセットの両方で生成される,目立った,きめ細かな,クラス識別的な視覚的説明が得られた。
- 参考スコア(独自算出の注目度): 10.617463958884528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum machine learning (QML) has recently made significant advancements in various topics. Despite the successes, the safety and interpretability of QML applications have not been thoroughly investigated. This work proposes using Variational Quantum Circuits (VQCs) for activation mapping to enhance model transparency, introducing the Quantum Gradient Class Activation Map (QGrad-CAM). This hybrid quantum-classical computing framework leverages both quantum and classical strengths and gives access to the derivation of an explicit formula of feature map importance. Experimental results demonstrate significant, fine-grained, class-discriminative visual explanations generated across both image and speech datasets.
- Abstract(参考訳): 量子機械学習(QML)は近年,さまざまなトピックにおいて大きな進歩を遂げている。
成功にもかかわらず、QMLアプリケーションの安全性と解釈性は十分に調査されていない。
本研究は,アクティベーションマッピングに変分量子回路(VQC)を用いることで,モデルの透明性を高めることを提案し,量子グラディエントクラスアクティベーションマップ(QGrad-CAM)を導入した。
このハイブリッド量子古典計算フレームワークは、量子強みと古典的強みの両方を活用し、特徴写像の重要性の明示的な公式の導出にアクセスできる。
実験結果から,画像データセットと音声データセットの両方で生成される,目立った,きめ細かな,クラス識別的な視覚的説明が得られた。
関連論文リスト
- GQHAN: A Grover-inspired Quantum Hard Attention Network [53.96779043113156]
GQHAM(Grover-inspired Quantum Hard Attention Mechanism)を提案する。
GQHANは、既存の量子ソフト自己保持機構の有効性を超越して、非微分可能性ハードルをかなり上回っている。
GQHANの提案は、将来の量子コンピュータが大規模データを処理する基盤を築き、量子コンピュータビジョンの開発を促進するものである。
論文 参考訳(メタデータ) (2024-01-25T11:11:16Z) - Towards Transfer Learning for Large-Scale Image Classification Using
Annealing-based Quantum Boltzmann Machines [7.106829260811707]
本稿では,Quantum Annealing (QA) を用いた画像分類手法を提案する。
本稿では,アニール型量子ボルツマンマシンをハイブリッド量子古典パイプラインの一部として用いることを提案する。
提案手法は,テスト精度とAUC-ROC-Scoreの点で,古典的ベースラインを一貫して上回っていることがわかった。
論文 参考訳(メタデータ) (2023-11-27T16:07:49Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Qは、量子機械学習のためのオープンソースのソフトウェアフレームワークである。
古典的な機械学習ライブラリと量子シミュレータをシームレスに統合する。
量子回路とトレーニングの進捗をリアルタイムで視覚化できるグラフィカルモードを提供する。
論文 参考訳(メタデータ) (2023-01-13T09:35:05Z) - Quantum Phase Recognition using Quantum Tensor Networks [0.0]
本稿では,教師付き学習タスクのためのテンソルネットワークにインスパイアされた浅部変分アンザツに基づく量子機械学習手法について検討する。
マルチスケールエンタングルメント再正規化アンサッツ (MERA) とツリーテンソルネットワーク (TTN) がパラメタライズド量子回路にインスパイアされた場合、テストセットの精度が$geq 98%に達する。
論文 参考訳(メタデータ) (2022-12-12T19:29:07Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Subtleties in the trainability of quantum machine learning models [0.0]
本稿では,変分量子アルゴリズムの勾配スケーリング結果を用いて,量子機械学習モデルの勾配スケーリングについて検討する。
以上の結果から,VQAトレーサビリティの低下がQMLのバレンプラトーなどの問題を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2021-10-27T20:28:53Z) - Clustering and enhanced classification using a hybrid quantum
autoencoder [0.0]
本稿では,量子状態から情報を抽出する手法を提案する。
この変分QMLアルゴリズムは、それらの重要な識別特性を識別し、古典的に表現することを学ぶ。
HQAモデルの解析と利用は振幅符号化状態の文脈で述べる。
論文 参考訳(メタデータ) (2021-07-26T06:50:31Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
量子機械学習手法を用いて表情認識の可能な解を示す。
適切に定義された量子状態の振幅に符号化されたグラフの隣接行列を操作する量子回路を定義する。
論文 参考訳(メタデータ) (2021-02-09T13:48:00Z) - Efficient Discrete Feature Encoding for Variational Quantum Classifier [3.7576442570677253]
変分量子分類(VQC)は、量子的に有利な方法の一つである。
本稿では,量子ランダムアクセス符号化(QRAC)を用いて,離散的特徴をVQCの量子ビット数に効率的にマッピングする手法を提案する。
QRACがVQCのトレーニングを高速化するためには,マッピングのキュービット数を節約することで,パラメータを削減できることを実験的に示す。
論文 参考訳(メタデータ) (2020-05-29T04:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。