論文の概要: Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics
- arxiv url: http://arxiv.org/abs/2408.06103v1
- Date: Mon, 12 Aug 2024 12:43:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 14:15:41.037898
- Title: Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics
- Title(参考訳): GLMと2重ロバスト関数の局所漸近下でのモーメント推定法
- Authors: Xingyu Chen, Lin Liu, Rajarshi Mukherjee,
- Abstract要約: 高次元一般化線形モデル(GLM)における回帰係数と信号対雑音比の推定について考察する。
我々は、推論対象の一貫性と漸近的正規性(CAN)推定を導出する。
理論的結果を数値実験と既存文献との比較で補完する。
- 参考スコア(独自算出の注目度): 30.324051162373973
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider the estimation of regression coefficients and signal-to-noise (SNR) ratio in high-dimensional Generalized Linear Models (GLMs), and explore their implications in inferring popular estimands such as average treatment effects in high-dimensional observational studies. Under the ``proportional asymptotic'' regime and Gaussian covariates with known (population) covariance $\Sigma$, we derive Consistent and Asymptotically Normal (CAN) estimators of our targets of inference through a Method-of-Moments type of estimators that bypasses estimation of high dimensional nuisance functions and hyperparameter tuning altogether. Additionally, under non-Gaussian covariates, we demonstrate universality of our results under certain additional assumptions on the regression coefficients and $\Sigma$. We also demonstrate that knowing $\Sigma$ is not essential to our proposed methodology when the sample covariance matrix estimator is invertible. Finally, we complement our theoretical results with numerical experiments and comparisons with existing literature.
- Abstract(参考訳): 本稿では,高次元一般化線形モデル(GLMs)における回帰係数と信号対雑音比(SNR)の推定を考察し,高次元観察研究における平均処理効果などの一般的な推定値について考察する。
比例的漸近'型とガウス的共変量と既知の(人口)共分散$\Sigma$の下では、高次元ニュアンス関数とハイパーパラメータチューニングの見積を全くバイパスするメソッド・オブ・モーメント型推定器を通して、推論対象の一貫性および漸近正規性(CAN)推定器を導出する。
さらに、非ガウス共変量の下では、回帰係数と$\Sigma$に関するある種の仮定の下で結果の普遍性を示す。
また、サンプル共分散行列推定器が可逆である場合、$\Sigma$を知ることは提案手法に必須ではないことを示す。
最後に,理論結果を数値実験と既存文献との比較で補完する。
関連論文リスト
- Modeling High-Dimensional Dependent Data in the Presence of Many Explanatory Variables and Weak Signals [0.0]
本稿では,多数の説明変数が利用可能であり,信号対雑音比が低い場合に,高次元依存データをモデル化する手法について考察する。
論文 参考訳(メタデータ) (2024-12-06T02:54:31Z) - Asymptotics of Linear Regression with Linearly Dependent Data [28.005935031887038]
非ガウス共変量の設定における線形回帰の計算について検討する。
本稿では,依存性が推定誤差と正規化パラメータの選択にどのように影響するかを示す。
論文 参考訳(メタデータ) (2024-12-04T20:31:47Z) - Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
高次元極限における正規化凸分類器の一般クラスの挙動について検討する。
我々の焦点は、推定器の一般化誤差と変数選択性である。
論文 参考訳(メタデータ) (2024-10-25T19:58:36Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Partially factorized variational inference for high-dimensional mixed models [0.0]
変分推論は、特にベイズ的文脈において、そのような計算を行う一般的な方法である。
標準平均場変動推論は,高次元の後方不確かさを劇的に過小評価することを示した。
次に、平均場仮定を適切に緩和すると、不確実な定量化が高次元で悪化しない手法が導かれることを示す。
論文 参考訳(メタデータ) (2023-12-20T16:12:37Z) - Adaptive Linear Estimating Equations [5.985204759362746]
本稿では,デバイアス推定器の一般的な構成法を提案する。
適応線形推定方程式の考え方を利用し、正規性の理論的保証を確立する。
我々の推定器の健全な特徴は、マルチアームバンディットの文脈では、我々の推定器は非漸近的な性能を保っていることである。
論文 参考訳(メタデータ) (2023-07-14T12:55:47Z) - Optimal variance-reduced stochastic approximation in Banach spaces [114.8734960258221]
可分バナッハ空間上で定義された収縮作用素の定点を推定する問題について検討する。
演算子欠陥と推定誤差の両方に対して漸近的でない境界を確立する。
論文 参考訳(メタデータ) (2022-01-21T02:46:57Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
勾配降下(SGD)により最適化された高次元におけるランダム特徴(RF)回帰特性について検討する。
本研究では, RF回帰の高精度な非漸近誤差境界を, 定常および適応的なステップサイズSGD設定の下で導出する。
理論的にも経験的にも二重降下現象を観察する。
論文 参考訳(メタデータ) (2021-10-13T17:47:39Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。