論文の概要: Closing the Affective Loop via Experience-Driven Reinforcement Learning Designers
- arxiv url: http://arxiv.org/abs/2408.06346v1
- Date: Tue, 23 Jul 2024 13:56:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 03:57:10.762085
- Title: Closing the Affective Loop via Experience-Driven Reinforcement Learning Designers
- Title(参考訳): 経験駆動型強化学習デザイナによる影響ループの閉鎖
- Authors: Matthew Barthet, Diogo Branco, Roberto Gallotta, Ahmed Khalifa, Georgios N. Yannakakis,
- Abstract要約: 本研究では,感情調整コンテンツを生成するための新しい強化学習フレームワークを提案する。
私たちはレースゲームの領域でそれをテストします。
本研究は,デザイナーのスタイルに応じて,感情駆動型レーシングゲームレベルを生成できることを示唆する。
- 参考スコア(独自算出の注目度): 2.436272597746976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomously tailoring content to a set of predetermined affective patterns has long been considered the holy grail of affect-aware human-computer interaction at large. The experience-driven procedural content generation framework realises this vision by searching for content that elicits a certain experience pattern to a user. In this paper, we propose a novel reinforcement learning (RL) framework for generating affect-tailored content, and we test it in the domain of racing games. Specifically, the experience-driven RL (EDRL) framework is given a target arousal trace, and it then generates a racetrack that elicits the desired affective responses for a particular type of player. EDRL leverages a reward function that assesses the affective pattern of any generated racetrack from a corpus of arousal traces. Our findings suggest that EDRL can accurately generate affect-driven racing game levels according to a designer's style and outperforms search-based methods for personalised content generation. The method is not only directly applicable to game content generation tasks but also employable broadly to any domain that uses content for affective adaptation.
- Abstract(参考訳): 特定の感情パターンのセットに自動的に調整する内容は、長い間、人間とコンピュータの相互作用を広く認識する聖杯と考えられてきた。
体験駆動型手続き型コンテンツ生成フレームワークは、特定の体験パターンをユーザに提供するコンテンツを探すことによって、このビジョンを実現する。
本稿では,感情調整されたコンテンツを生成するための新しい強化学習(RL)フレームワークを提案する。
具体的には、経験駆動型RL(EDRL)フレームワークに目標の覚醒トレースが与えられ、特定のタイプのプレーヤに対して望ましい感情応答を与えるレーストラックが生成される。
EDRLは、覚醒トレースのコーパスから生成された任意のレーストラックの感情パターンを評価する報奨関数を利用する。
以上の結果から,EDRLはデザイナーのスタイルに応じて感情駆動型レースゲームレベルを正確に生成し,パーソナライズされたコンテンツ生成のための検索ベースの手法より優れていることが示唆された。
この方法は、ゲームコンテンツ生成タスクに直接適用されるだけでなく、感情適応のためにコンテンツを使用するどの領域にも広く適用することができる。
関連論文リスト
- A Benchmark Environment for Offline Reinforcement Learning in Racing Games [54.83171948184851]
オフライン強化学習(英語: Offline Reinforcement Learning、ORL)は、従来の強化学習(RL)の高サンプリング複雑さを減らすための有望なアプローチである。
本稿では,ORL研究のための新しい環境であるOfflineManiaを紹介する。
TrackManiaシリーズにインスパイアされ、Unity 3Dゲームエンジンで開発された。
論文 参考訳(メタデータ) (2024-07-12T16:44:03Z) - ChatPCG: Large Language Model-Driven Reward Design for Procedural Content Generation [3.333383360927007]
本稿では,大規模言語モデル(LLM)による報酬設計フレームワークChatPCGを提案する。
ゲーム専門知識と組み合わさった人間レベルの洞察を活用して、特定のゲーム機能に合わせた報酬を自動的に生成する。
ChatPCGは深層強化学習と統合されており、マルチプレイヤーゲームコンテンツ生成タスクの可能性を示している。
論文 参考訳(メタデータ) (2024-06-07T08:18:42Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
一般的に使われているアクションマッチングの原理は、RLエージェントの解釈よりもディープニューラルネットワーク(DNN)の説明に近いと論じられている。
本稿では,RLエージェントの主目的である報酬を,RLエージェントを解釈する本質的な目的として考察する。
我々は,Atari 2600 ゲームと,挑戦的な自動運転車シミュレータ環境である Duckietown の検証と評価を行った。
論文 参考訳(メタデータ) (2023-09-04T09:09:54Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z) - Play with Emotion: Affect-Driven Reinforcement Learning [3.611888922173257]
本稿では、強化学習プロセスとして、感情モデリングの課題を観ることによるパラダイムシフトを紹介する。
我々は,Go-Blendエージェントをトレーニングし,覚醒と行動の人間の実演をモデル化することで,レースゲームにおける仮説を検証した。
論文 参考訳(メタデータ) (2022-08-26T12:28:24Z) - Modeling Content Creator Incentives on Algorithm-Curated Platforms [76.53541575455978]
本研究では,アルゴリズムの選択が露出ゲームにおける(ナッシュ)平衡の存在と性格にどのように影響するかを検討する。
本研究では、露出ゲームにおける平衡を数値的に見つけるためのツールを提案し、MovieLensとLastFMデータセットの監査結果を示す。
論文 参考訳(メタデータ) (2022-06-27T08:16:59Z) - A Survey on Reinforcement Learning Methods in Character Animation [22.3342752080749]
強化学習(Reinforcement Learning)は、エージェントがシーケンシャルな決定をするためにどのようにトレーニングできるかに焦点を当てた機械学習の分野である。
本稿では,現代のDeep Reinforcement Learning法を調査し,キャラクタアニメーションにおける応用の可能性について考察する。
論文 参考訳(メタデータ) (2022-03-07T23:39:00Z) - CCPT: Automatic Gameplay Testing and Validation with
Curiosity-Conditioned Proximal Trajectories [65.35714948506032]
Curiosity-Conditioned Proximal Trajectories (CCPT)法は、好奇心と模倣学習を組み合わせてエージェントを訓練して探索する。
CCPTが複雑な環境を探索し、ゲームプレイの問題を発見し、その過程におけるデザインの監視を行い、それらをゲームデザイナーに直接認識し、強調する方法について説明する。
論文 参考訳(メタデータ) (2022-02-21T09:08:33Z) - Go-Blend behavior and affect [2.323282558557423]
本稿では、感情モデリングタスクを強化学習プロセスとして見ることにより、感情コンピューティングのパラダイムシフトを提案する。
本研究では,Go-Exploreエージェントを最適にプレイし,人間の覚醒のデモンストレーションを模倣しようとすることで,アーケードゲームにおける我々のフレームワークをテストする。
論文 参考訳(メタデータ) (2021-09-24T17:04:30Z) - Experience-Driven PCG via Reinforcement Learning: A Super Mario Bros
Study [2.2215852332444905]
このフレームワークは、当初スーパーマリオブラザーズゲームでテストされている。
生成の正確性は、ニューラルネットアシスト進化レベル修復器によって保証される。
提案するフレームワークは、無限にプレイ可能なスーパーマリオブラザーズレベルを生成することができる。
論文 参考訳(メタデータ) (2021-06-30T08:10:45Z) - Demonstration-efficient Inverse Reinforcement Learning in Procedurally
Generated Environments [137.86426963572214]
逆強化学習(Inverse Reinforcement Learning)は、専門家によるデモンストレーションから報酬関数を外挿する。
提案手法であるDE-AIRLは、実演効率が高く、完全手続き領域に一般化する報酬関数を外挿できることを示す。
論文 参考訳(メタデータ) (2020-12-04T11:18:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。