論文の概要: ChatPCG: Large Language Model-Driven Reward Design for Procedural Content Generation
- arxiv url: http://arxiv.org/abs/2406.11875v1
- Date: Fri, 7 Jun 2024 08:18:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-23 13:24:48.403764
- Title: ChatPCG: Large Language Model-Driven Reward Design for Procedural Content Generation
- Title(参考訳): ChatPCG: 手続き型コンテンツ生成のための大規模言語モデル駆動リワード設計
- Authors: In-Chang Baek, Tae-Hwa Park, Jin-Ha Noh, Cheong-Mok Bae, Kyung-Joong Kim,
- Abstract要約: 本稿では,大規模言語モデル(LLM)による報酬設計フレームワークChatPCGを提案する。
ゲーム専門知識と組み合わさった人間レベルの洞察を活用して、特定のゲーム機能に合わせた報酬を自動的に生成する。
ChatPCGは深層強化学習と統合されており、マルチプレイヤーゲームコンテンツ生成タスクの可能性を示している。
- 参考スコア(独自算出の注目度): 3.333383360927007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Driven by the rapid growth of machine learning, recent advances in game artificial intelligence (AI) have significantly impacted productivity across various gaming genres. Reward design plays a pivotal role in training game AI models, wherein researchers implement concepts of specific reward functions. However, despite the presence of AI, the reward design process predominantly remains in the domain of human experts, as it is heavily reliant on their creativity and engineering skills. Therefore, this paper proposes ChatPCG, a large language model (LLM)-driven reward design framework.It leverages human-level insights, coupled with game expertise, to generate rewards tailored to specific game features automatically. Moreover, ChatPCG is integrated with deep reinforcement learning, demonstrating its potential for multiplayer game content generation tasks. The results suggest that the proposed LLM exhibits the capability to comprehend game mechanics and content generation tasks, enabling tailored content generation for a specified game. This study not only highlights the potential for improving accessibility in content generation but also aims to streamline the game AI development process.
- Abstract(参考訳): 機械学習の急速な成長によって、近年のゲーム人工知能(AI)の進歩は、様々なゲームジャンルの生産性に大きな影響を与えている。
リワードデザインは、研究者が特定の報酬関数の概念を実装するゲームAIモデルのトレーニングにおいて重要な役割を果たす。
しかし、AIの存在にもかかわらず、報酬設計プロセスは、主に人間の専門家の領域に留まり、創造性とエンジニアリングスキルに大きく依存している。
そこで本稿では,大規模言語モデル(LLM)による報酬設計フレームワークであるChatPCGを提案する。
さらに、ChatPCGは深層強化学習と統合されており、マルチプレイヤーゲームコンテンツ生成タスクの可能性を示している。
提案手法は,ゲームメカニクスとコンテンツ生成タスクの理解能力を示し,特定のゲームに適したコンテンツ生成を可能にすることを示唆している。
この研究は、コンテンツ生成におけるアクセシビリティ向上の可能性だけでなく、ゲームAI開発プロセスの合理化も目指している。
関連論文リスト
- Grammar-based Game Description Generation using Large Language Models [12.329521804287259]
ゲームデザイン空間を効果的に構成するゲーム記述の文法を推論プロセスに導入する。
ゲーム記述の生成において,本手法が有効であることを示す。
論文 参考訳(メタデータ) (2024-07-24T16:36:02Z) - Affordance-Guided Reinforcement Learning via Visual Prompting [51.361977466993345]
本稿では、視覚言語モデル(VLM)によって形成される報酬について研究し、ロボット学習における報酬の密度を定義する。
自然言語記述によって指定された実世界の操作タスクにおいて、これらの報酬は自律的RLのサンプル効率を向上させる。
論文 参考訳(メタデータ) (2024-07-14T21:41:29Z) - Instruction-Driven Game Engines on Large Language Models [60.28620831276439]
IDGEプロジェクトは、大規模な言語モデルが自由形式のゲームルールに従うことを可能にすることで、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオに対するモデルの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
私たちの最初の進歩は、汎用的なカードゲームであるPoker用のIDGEを開発することです。
論文 参考訳(メタデータ) (2024-03-30T08:02:16Z) - The Ink Splotch Effect: A Case Study on ChatGPT as a Co-Creative Game
Designer [2.778721019132512]
本稿では,大規模言語モデル(LLM)がゲームデザインにおいて,より効果的でハイレベルな創造的コラボレータや「マウス」として機能するかを考察する。
私たちのゴールは、AIアシスタントが人間のデザイナーによって実現された創造的な意図と比較して、ゲームに取って代わる品質を向上、妨げ、提供できるかどうかを判断することです。
論文 参考訳(メタデータ) (2024-03-04T20:14:38Z) - ArchiGuesser -- AI Art Architecture Educational Game [0.5919433278490629]
生成AIは、単純な入力プロンプトに基づいて、テキスト、音声、画像から教育コンテンツを作成することができる。
本稿では,様々なAI技術を組み合わせた多感覚学習ゲームArchiGuesserについて述べる。
論文 参考訳(メタデータ) (2023-12-14T20:48:26Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - Technical Challenges of Deploying Reinforcement Learning Agents for Game
Testing in AAA Games [58.720142291102135]
本稿では,既存の自動ゲームテストソリューションに,スクリプト型ボットをベースとして,実験的な強化学習システムを追加する取り組みについて述べる。
ゲーム制作において強化学習を活用するためのユースケースを示し、ゲームのために同じ旅をしたいと思う人なら誰でも遭遇する最大の時間をカバーしています。
我々は、機械学習、特にゲーム生産において効果的なツールである強化学習を作るのに価値があり、必要であると考えるいくつかの研究指針を提案する。
論文 参考訳(メタデータ) (2023-07-19T18:19:23Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPTおよびその他の生成AI(GAI)技術は、人工知能生成コンテンツ(AIGC)のカテゴリに属している。
AIGCの目標は、コンテンツ作成プロセスをより効率的かつアクセスしやすくし、高品質なコンテンツをより高速に生産できるようにすることである。
論文 参考訳(メタデータ) (2023-03-07T20:36:13Z) - The MineRL BASALT Competition on Learning from Human Feedback [58.17897225617566]
MineRL BASALTコンペティションは、この重要な種類の技術の研究を促進することを目的としている。
Minecraftでは、ハードコードされた報酬関数を書くのが難しいと期待する4つのタスクのスイートを設計しています。
これら4つのタスクのそれぞれについて、人間のデモのデータセットを提供するとともに、模擬学習ベースラインを提供する。
論文 参考訳(メタデータ) (2021-07-05T12:18:17Z) - AI in (and for) Games [0.9920773256693857]
この章では、人工知能(AI)/機械学習(ML)アルゴリズムとデジタルゲームとの関係について概説する。
一方、ai/ml研究者は、人間の感情的活動、プレイヤーの行動に関する大規模かつ内部的なデータセットを生成できる。
一方、ゲームは知的アルゴリズムを利用して、ゲームレベルのテストの自動化、コンテンツの生成、知的でレスポンシブな非プレイヤーキャラクタ(NPC)の開発、プレイヤーの振る舞いの予測と応答を行うことができる。
論文 参考訳(メタデータ) (2021-05-07T08:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。