論文の概要: Assessment of Cell Nuclei AI Foundation Models in Kidney Pathology
- arxiv url: http://arxiv.org/abs/2408.06381v1
- Date: Fri, 9 Aug 2024 22:34:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:48:49.051647
- Title: Assessment of Cell Nuclei AI Foundation Models in Kidney Pathology
- Title(参考訳): 腎臓病における細胞核AIファンデーションモデルの評価
- Authors: Junlin Guo, Siqi Lu, Can Cui, Ruining Deng, Tianyuan Yao, Zhewen Tao, Yizhe Lin, Marilyn Lionts, Quan Liu, Juming Xiong, Catie Chang, Mitchell Wilkes, Mengmeng Yin, Haichun Yang, Yuankai Huo,
- Abstract要約: この研究は、これまでで最大規模の評価であり、我々の知る限り、これまでで最大規模の評価である。
評価モデルのうち,CellViTは腎病理におけるセグメンテーション核の優れた性能を示した。
しかし、どの基礎モデルも完璧ではなく、腎臓病理学の一般的な核分割における性能ギャップは依然として残っている。
- 参考スコア(独自算出の注目度): 10.574005822664034
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cell nuclei instance segmentation is a crucial task in digital kidney pathology. Traditional automatic segmentation methods often lack generalizability when applied to unseen datasets. Recently, the success of foundation models (FMs) has provided a more generalizable solution, potentially enabling the segmentation of any cell type. In this study, we perform a large-scale evaluation of three widely used state-of-the-art (SOTA) cell nuclei foundation models (Cellpose, StarDist, and CellViT). Specifically, we created a highly diverse evaluation dataset consisting of 2,542 kidney whole slide images (WSIs) collected from both human and rodent sources, encompassing various tissue types, sizes, and staining methods. To our knowledge, this is the largest-scale evaluation of its kind to date. Our quantitative analysis of the prediction distribution reveals a persistent performance gap in kidney pathology. Among the evaluated models, CellViT demonstrated superior performance in segmenting nuclei in kidney pathology. However, none of the foundation models are perfect; a performance gap remains in general nuclei segmentation for kidney pathology.
- Abstract(参考訳): 細胞核のインスタンス・セグメンテーションは、デジタル腎臓病理学において重要な課題である。
従来の自動セグメンテーション手法は、目に見えないデータセットに適用する場合、一般化性に欠けることが多い。
近年、ファンデーションモデル(FM)の成功により、より一般化可能なソリューションが提供され、任意の細胞タイプのセグメンテーションが可能になった。
本研究では,SOTA細胞核基盤モデル(Cellpose,StarDist,CellViT)の大規模評価を行った。
具体的には,ヒトおよびげっ歯類ソースから収集した2,542個の腎臓全スライド画像(WSI)からなり,組織の種類,サイズ,染色方法を含む,高度に多様な評価データセットを作成した。
われわれの知る限り、これはこれまでで最大の評価だ。
予測分布の定量的解析により,腎病理における持続的なパフォーマンスギャップが明らかとなった。
評価モデルのうち,CellViTは腎病理におけるセグメンテーション核の優れた性能を示した。
しかし、どの基礎モデルも完璧ではなく、腎臓病理学の一般的な核分割における性能ギャップが残っている。
関連論文リスト
- Glo-In-One-v2: Holistic Identification of Glomerular Cells, Tissues, and Lesions in Human and Mouse Histopathology [12.863432260522943]
ヒトとマウスの病理データを部分的にラベル付けした画像内に14のクラスをセグメント化するために設計された,単一の動的頭部深層学習アーキテクチャを提案する。
ネットワークセグメントは、接着、毛細管落下、大脳性硬化症、ハイアリン症、メサンギウム分解、微小動脈瘤、結節性硬化症、メサンギウム拡張、セグメント性硬化症を含む9つの糸球体病変クラスを含む。
論文 参考訳(メタデータ) (2024-11-25T21:59:39Z) - How Good Are We? Evaluating Cell AI Foundation Models in Kidney Pathology with Human-in-the-Loop Enrichment [11.60167559546617]
AI基盤モデルのトレーニングは、現実の医療課題に対処するための、有望な大規模学習アプローチとして登場した。
これらのモデルの多くは、疾患の診断や組織定量化などのタスクのために開発されたが、単一の臓器内の核分割のような最も単純なタスクに展開するための準備が整っていないことは確かである。
本稿では、最近の細胞基盤モデルの性能をキュレートされたデータセット上で徹底的に評価することにより、この重要な疑問である「我々はどのくらい良いのか?」に答えようとしている。
論文 参考訳(メタデータ) (2024-10-31T17:00:33Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
カルマンフィルタを用いた線形変形型クロスアテンション(LDCA)モジュールを用いた血管セグメンテーションのための新しいネットワーク(KaLDeX)を提案する。
我々のアプローチは、カルマンフィルタ(KF)ベースの線形変形可能な畳み込み(LD)とクロスアテンション(CA)モジュールの2つの重要なコンポーネントに基づいている。
提案手法は,網膜基底画像データセット(DRIVE,CHASE_BD1,STARE)とOCTA-500データセットの3mm,6mmを用いて評価した。
論文 参考訳(メタデータ) (2024-10-28T16:00:42Z) - DinoBloom: A Foundation Model for Generalizable Cell Embeddings in Hematology [1.3551232282678036]
血液学における単細胞画像の最初の基盤モデルであるDinoBloomを紹介した。
本モデルは末梢血と骨髄のスミアの13種類の多種多様な公開データセットの広範囲な収集に基づいて構築されている。
4つのDinoBloomモデルのファミリーは、幅広い下流アプリケーションに適応することができる。
論文 参考訳(メタデータ) (2024-04-07T17:25:52Z) - Certification of Deep Learning Models for Medical Image Segmentation [44.177565298565966]
ランダムな平滑化と拡散モデルに基づく医用画像のための認定セグメンテーションベースラインを初めて提示する。
この結果から,拡散確率モデルをデノナイズするパワーを活用することで,ランダムな平滑化の限界を克服できることが示唆された。
論文 参考訳(メタデータ) (2023-10-05T16:40:33Z) - Evaluation Kidney Layer Segmentation on Whole Slide Imaging using
Convolutional Neural Networks and Transformers [13.602882723160388]
腎臓層構造のセグメンテーションは、腎病理における自動画像解析において重要な役割を担っている。
現在の手動セグメンテーションプロセスは、広範囲なデジタル病理画像を扱うために、労働集約的かつ実用的であることを証明している。
本研究では,代表畳み込みニューラルネットワーク(CNN)とトランスフォーマーセグメンテーションアプローチを用いる。
論文 参考訳(メタデータ) (2023-09-05T20:24:27Z) - Imbalanced Domain Generalization for Robust Single Cell Classification
in Hematological Cytomorphology [3.7007225479462402]
我々は、ドメイン間データの不均衡とドメインシフトに対処して、WBC分類のための堅牢なCNNを訓練する。
提案手法は,既存手法と比較してF1マクロスコアが最適である。
論文 参考訳(メタデータ) (2023-03-14T10:20:31Z) - CoNIC Challenge: Pushing the Frontiers of Nuclear Detection,
Segmentation, Classification and Counting [46.45578907156356]
我々は、核分裂と細胞組成を評価するために、その種の最大の利用可能なデータセットを用いて、コミュニティ全体の課題をセットアップする。
大腸組織1,658枚の全スライディング画像を用いて,トップパフォーマンスモデルに基づく広範囲な組織解析を行った。
腫瘍微小環境において,核および好酸球が重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2023-03-11T01:21:13Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
身体CT画像の深層学習セグメント化モデルを提案する。
このモデルは、臓器の容積、疾患の特徴、外科的または放射線療法計画などのユースケースに関連する104の解剖学的構造を区分することができる。
論文 参考訳(メタデータ) (2022-08-11T15:16:40Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
本稿では,エンド・ツー・エンドのMB腫瘍分類を提案し,様々な入力サイズとネットワーク次元の一致した移動学習を提案する。
161ケースのデータセットを用いて、より大規模な入力解像度を持つ事前学習されたEfficientNetが、大幅な性能改善をもたらすことを実証した。
論文 参考訳(メタデータ) (2021-09-10T13:07:11Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。