論文の概要: Approximate ADCs for In-Memory Computing
- arxiv url: http://arxiv.org/abs/2408.06390v1
- Date: Sun, 11 Aug 2024 05:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:48:49.039832
- Title: Approximate ADCs for In-Memory Computing
- Title(参考訳): インメモリコンピューティングのための近似ADC
- Authors: Arkapravo Ghosh, Hemkar Reddy Sadana, Mukut Debnath, Panthadip Maji, Shubham Negi, Sumeet Gupta, Mrigank Sharad, Kaushik Roy,
- Abstract要約: ディープラーニング(DL)アクセラレーターのためのメモリコンピューティング(IMC)アーキテクチャでは、エネルギー効率と高い並列行列ベクトル乗算(MVM)演算を利用する。
最近報告された設計では、MVMの結果を読み取るのに必要なADCが、計算能力の85%以上を消費し、またその領域を支配していることが明らかになっている。
本研究では,ICCコアの周辺認識設計を行い,そのオーバーヘッドを軽減する。
- 参考スコア(独自算出の注目度): 5.1793930906065775
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In memory computing (IMC) architectures for deep learning (DL) accelerators leverage energy-efficient and highly parallel matrix vector multiplication (MVM) operations, implemented directly in memory arrays. Such IMC designs have been explored based on CMOS as well as emerging non-volatile memory (NVM) technologies like RRAM. IMC architectures generally involve a large number of cores consisting of memory arrays, storing the trained weights of the DL model. Peripheral units like DACs and ADCs are also used for applying inputs and reading out the output values. Recently reported designs reveal that the ADCs required for reading out the MVM results, consume more than 85% of the total compute power and also dominate the area, thereby eschewing the benefits of the IMC scheme. Mitigation of imperfections in the ADCs, namely, non-linearity and variations, incur significant design overheads, due to dedicated calibration units. In this work we present peripheral aware design of IMC cores, to mitigate such overheads. It involves incorporating the non-idealities of ADCs in the training of the DL models, along with that of the memory units. The proposed approach applies equally well to both current mode as well as charge mode MVM operations demonstrated in recent years., and can significantly simplify the design of mixed-signal IMC units.
- Abstract(参考訳): 深層学習(DL)アクセラレーターのためのメモリコンピューティング(IMC)アーキテクチャでは、メモリアレイに直接実装されたエネルギー効率と高並列行列ベクトル乗算(MVM)演算を利用する。
IMCの設計はCMOSとRRAMのような新しい非揮発性メモリ(NVM)技術に基づいて研究されている。
IMCアーキテクチャは一般に、メモリアレイからなる多数のコアを含み、DLモデルのトレーニングされた重みを格納する。
DACやADCのような周辺ユニットは、入力を適用して出力値を読み出すためにも使われる。
最近報告された設計では、MVM結果を読み取るのに必要なADCが計算能力の85%以上を消費し、またその領域を支配しており、IMC方式の利点を浮き彫りにしている。
ADCにおける欠陥の軽減、すなわち非線形性やバリエーションは、専用の校正ユニットのために重大な設計上のオーバーヘッドを引き起こした。
本研究では,ICCコアの周辺認識設計を行い,そのオーバーヘッドを軽減する。
ADCの非理想性をDLモデルのトレーニングとメモリユニットのトレーニングに組み込む。
提案手法は、近年実証されているチャージモードMVM操作と同様に、現在のモードにも当てはまる。
また、混合信号MCユニットの設計を大幅に単純化することができる。
関連論文リスト
- DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
実世界のロボットのためのMLLMの開発は、ロボットプラットフォームで利用可能な計算能力とメモリ容量が典型的に限られているため、難しい。
活性化MLLMのサイズを自動的に調整するロボットビジョンランゲージ・アクション・モデル(DeeR)の動的早期実行フレームワークを提案する。
DeeR は LLM の計算コストを 5.2-6.5x に削減し、GPU のメモリを 2-6x に削減した。
論文 参考訳(メタデータ) (2024-11-04T18:26:08Z) - Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural Networks [2.9699290794642366]
ARTEMISは、トランスフォーマーモデルのための混合アナログ確率型インDRAMアクセラレータである。
解析の結果、ARTEMISはGPU、TPU、CPU、最先端のPIMトランスハードウェアアクセラレータと比較して、少なくとも3.0倍のスピードアップ、1.8倍のエネルギー、そして1.9倍のエネルギー効率を示した。
論文 参考訳(メタデータ) (2024-07-17T15:08:14Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
デジタルコンピュータにおける従来の信号再構成手法は、ソフトウェアとハードウェアの両方の課題に直面している。
本稿では,スパース入力からの信号再構成のためのソフトウェア・ハードウェア協調最適化を用いた体系的アプローチを提案する。
この研究は、AI駆動の信号復元技術を進歩させ、将来の効率的で堅牢な医療AIと3Dビジョンアプリケーションへの道を開く。
論文 参考訳(メタデータ) (2024-04-15T09:33:09Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
この研究は、大規模なデータセットを再計算し、再トレーニングすることなくオンラインチューニングが可能な、新しいパラメータ適応型AMPCアーキテクチャを導入している。
資源制約の厳しいマイクロコントローラ(MCU)を用いた2種類の実カートポールシステムの揺らぎを制御し,パラメータ適応型AMPCの有効性を示す。
これらの貢献は、現実世界のシステムにおけるAMPCの実践的応用に向けた重要な一歩である。
論文 参考訳(メタデータ) (2024-04-08T20:02:19Z) - RACE-IT: A Reconfigurable Analog CAM-Crossbar Engine for In-Memory
Transformer Acceleration [21.196696191478885]
Transformer ModelはDeep Neural Networks(DNN)の最先端を表現している。
これらのモデルを処理するには、かなりの計算資源が必要で、結果としてかなりのメモリフットプリントが要求される。
本稿では,トランスフォーマ内で様々な非MVM操作を行うことのできる新しいAnalog Content Addressable Memory(ACAM)構造を提案する。
論文 参考訳(メタデータ) (2023-11-29T22:45:39Z) - Hardware/Software co-design with ADC-Less In-memory Computing Hardware
for Spiking Neural Networks [4.7519630770389405]
スパイキングニューラルネットワーク(SNN)は、資源制約されたエッジデバイス上でのシーケンシャルタスクのエネルギー効率の高い実装を実現する大きな可能性を秘めているバイオプレースブルモデルである。
我々は,従来のHP-ADCに代えて,センスアンプを1ビットのADCとして使用して,SNNをADC-Less IMCアーキテクチャにデプロイするハードウェア/ソフトウェア共同設計手法を提案する。
提案するフレームワークは,ハードウェア・アウェア・トレーニングによって最小限の精度劣化を生じさせ,単純な画像分類タスクを超えて,より複雑な逐次回帰タスクにスケールすることができる。
論文 参考訳(メタデータ) (2022-11-03T22:37:49Z) - Reliability-Aware Deployment of DNNs on In-Memory Analog Computing
Architectures [0.0]
In-Memory Analog Computing (IMAC) 回路は、アナログ領域におけるMVMとNLVの両方の操作を実現することにより、信号変換器の必要性を取り除く。
我々は、ディープニューラルネットワーク(DNN)に大規模な行列を複数の小さなIMACサブアレイに展開する実践的なアプローチを導入し、ノイズや寄生虫の影響を軽減する。
論文 参考訳(メタデータ) (2022-10-02T01:43:35Z) - Mitigating Out-of-Distribution Data Density Overestimation in
Energy-Based Models [54.06799491319278]
深部エネルギーベースモデル(EBM)は、複雑な分布を学習する能力によって注目されている。
EBMの訓練には、Langevin Monte Carlo (LMC) を用いた最大推定(MLE)を用いることが多い。
短周期LCCのMLEが, 誤った密度推定でEMMに収束する理由を考察する。
論文 参考訳(メタデータ) (2022-05-30T02:49:17Z) - Coarse-to-Fine Embedded PatchMatch and Multi-Scale Dynamic Aggregation
for Reference-based Super-Resolution [48.093500219958834]
参照型スーパーリゾリューションのためのAMSA(Accelerated Multi-Scale Aggregation Network)を提案する。
提案したAMSAは,定量評価と定性評価の両面において,最先端の手法よりも優れた性能を実現する。
論文 参考訳(メタデータ) (2022-01-12T08:40:23Z) - An In-Memory Analog Computing Co-Processor for Energy-Efficient CNN
Inference on Mobile Devices [4.117012092777604]
非揮発性メモリアレイ内のシナプス挙動とアクティベーション機能の両方を実現するインメモリアナログコンピューティング(IMAC)アーキテクチャを開発した。
スピン軌道トルク磁気抵抗ランダムアクセスメモリ(SOT-MRAM)装置を利用してシグモダルニューロンと双対シナプスを実現する。
モバイルプロセッサ上での畳み込みニューラルネットワーク(CNN)推論において、異種混合信号と混合精度のCPU-IMACアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-05-24T23:01:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。