Advanced Vision Transformers and Open-Set Learning for Robust Mosquito Classification: A Novel Approach to Entomological Studies
- URL: http://arxiv.org/abs/2408.06457v2
- Date: Mon, 4 Nov 2024 13:43:15 GMT
- Title: Advanced Vision Transformers and Open-Set Learning for Robust Mosquito Classification: A Novel Approach to Entomological Studies
- Authors: Ahmed Akib Jawad Karim, Muhammad Zawad Mahmud, Riasat Khan,
- Abstract summary: This work presents an innovative approach to mosquito classification by leveraging vision transformers and open-set learning techniques.
A novel framework has been introduced that integrates Transformer-based deep learning models with comprehensive data augmentation and preprocessing methods.
The proposed framework's ability to handle unseen classes like insects similar to mosquitoes, even humans, through open-set learning further enhances its practical applicability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mosquito-related diseases pose a significant threat to global public health, necessitating efficient and accurate mosquito classification for effective surveillance and control. This work presents an innovative approach to mosquito classification by leveraging state-of-the-art vision transformers and open-set learning techniques. A novel framework has been introduced that integrates Transformer-based deep learning models with comprehensive data augmentation and preprocessing methods, enabling robust and precise identification of ten mosquito species. The Swin Transformer model achieves the best performance for traditional closed-set learning with 99.80% accuracy and 0.998 F1 score. The lightweight MobileViT technique attains an almost similar accuracy of 98.90% with significantly reduced parameters and model complexities. Next, the applied deep learning models' adaptability and generalizability in a static environment have been enhanced by using new classes of data samples during the inference stage that have not been included in the training set. The proposed framework's ability to handle unseen classes like insects similar to mosquitoes, even humans, through open-set learning further enhances its practical applicability by employing the OpenMax technique and Weibull distribution. The traditional CNN model, Xception, outperforms the latest transformer with higher accuracy and F1 score for open-set learning. The study's findings highlight the transformative potential of advanced deep-learning architectures in entomology, providing a strong groundwork for future research and development in mosquito surveillance and vector control. The implications of this work extend beyond mosquito classification, offering valuable insights for broader ecological and environmental monitoring applications.
Related papers
- iFuzzyTL: Interpretable Fuzzy Transfer Learning for SSVEP BCI System [24.898026682692688]
This study explores advanced classification techniques leveraging interpretable fuzzy transfer learning (iFuzzyTL)
iFuzzyTL refines input signal processing and classification in a human-interpretable format by integrating fuzzy inference systems and attention mechanisms.
The model's efficacy is demonstrated across three datasets.
arXiv Detail & Related papers (2024-10-16T06:07:23Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Automated detection of Zika and dengue in Aedes aegypti using neural
spiking analysis [8.034395623865906]
Aedes aegypti mosquitoes are primary vectors for numerous medically important viruses.
No open-source neural spike classification method is currently available for mosquitoes.
We present an innovative artificial intelligence-based method to classify the neural spikes in uninfected, dengue-infected, and Zika-infected mosquitoes.
arXiv Detail & Related papers (2023-12-14T04:52:54Z) - Distilling Knowledge from CNN-Transformer Models for Enhanced Human
Action Recognition [1.8722948221596285]
The research aims to enhance the performance and efficiency of smaller student models by transferring knowledge from larger teacher models.
The proposed method employs a Transformer vision network as the student model, while a convolutional network serves as the teacher model.
The Vision Transformer (ViT) architecture is introduced as a robust framework for capturing global dependencies in images.
arXiv Detail & Related papers (2023-11-02T14:57:58Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - Explainable vision transformer enabled convolutional neural network for
plant disease identification: PlantXViT [11.623005206620498]
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy.
In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification.
The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services.
arXiv Detail & Related papers (2022-07-16T12:05:06Z) - Federated Adversarial Training with Transformers [16.149924042225106]
Federated learning (FL) has emerged to enable global model training over distributed clients' data while preserving its privacy.
This paper investigates feasibility with different federated model aggregation methods and different vision transformer models with different tokenization and classification head techniques.
arXiv Detail & Related papers (2022-06-05T09:07:09Z) - Zoo-Tuning: Adaptive Transfer from a Zoo of Models [82.9120546160422]
Zoo-Tuning learns to adaptively transfer the parameters of pretrained models to the target task.
We evaluate our approach on a variety of tasks, including reinforcement learning, image classification, and facial landmark detection.
arXiv Detail & Related papers (2021-06-29T14:09:45Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.