論文の概要: Kernel Sum of Squares for Data Adapted Kernel Learning of Dynamical Systems from Data: A global optimization approach
- arxiv url: http://arxiv.org/abs/2408.06465v1
- Date: Mon, 12 Aug 2024 19:32:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 19:27:43.736560
- Title: Kernel Sum of Squares for Data Adapted Kernel Learning of Dynamical Systems from Data: A global optimization approach
- Title(参考訳): 動的システムのデータ適応カーネル学習のための正方形のカーネルサム:大域的最適化アプローチ
- Authors: Daniel Lengyel, Panos Parpas, Boumediene Hamzi, Houman Owhadi,
- Abstract要約: 本稿では,Kernel Sum of Squares (KSOS) 法の適用について検討する。
従来のカーネルベースの手法は、最適なベースカーネルの選択とパラメータチューニングにしばしば苦労する。
KSOSは、カーネルベースのサロゲート関数を持つグローバル最適化フレームワークを活用することで、これらの問題を緩和する。
- 参考スコア(独自算出の注目度): 0.19999259391104385
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper examines the application of the Kernel Sum of Squares (KSOS) method for enhancing kernel learning from data, particularly in the context of dynamical systems. Traditional kernel-based methods, despite their theoretical soundness and numerical efficiency, frequently struggle with selecting optimal base kernels and parameter tuning, especially with gradient-based methods prone to local optima. KSOS mitigates these issues by leveraging a global optimization framework with kernel-based surrogate functions, thereby achieving more reliable and precise learning of dynamical systems. Through comprehensive numerical experiments on the Logistic Map, Henon Map, and Lorentz System, KSOS is shown to consistently outperform gradient descent in minimizing the relative-$\rho$ metric and improving kernel accuracy. These results highlight KSOS's effectiveness in predicting the behavior of chaotic dynamical systems, demonstrating its capability to adapt kernels to underlying dynamics and enhance the robustness and predictive power of kernel-based approaches, making it a valuable asset for time series analysis in various scientific fields.
- Abstract(参考訳): 本稿では,Kernel Sum of Squares (KSOS) 法を用いて,特に動的システムの文脈において,データからのカーネル学習を向上する手法について検討する。
従来のカーネルベースの手法は、理論的な音質と数値効率にもかかわらず、最適なベースカーネルの選択とパラメータチューニングにしばしば苦労する。
KSOSは、カーネルベースのサロゲート関数によるグローバル最適化フレームワークを活用することでこれらの問題を緩和し、動的システムのより信頼性と正確な学習を実現する。
ロジスティックマップ、ヘノンマップ、ローレンツシステムに関する総合的な数値実験により、KSOSは相対=$$\rho$メートル法を最小化し、カーネルの精度を向上する上で、一貫して勾配勾配よりも優れていることが示されている。
これらの結果は、カオス力学系の振る舞いを予測するKSOSの有効性を強調し、基盤となる力学にカーネルを適応させ、カーネルベースのアプローチの堅牢性と予測力を高める能力を示す。
関連論文リスト
- Center-Sensitive Kernel Optimization for Efficient On-Device Incremental Learning [88.78080749909665]
現在のオンデバイストレーニング手法は、破滅的な忘れを考慮せずに、効率的なトレーニングにのみ焦点をあてている。
本稿では,単純だが効果的なエッジフレンドリーなインクリメンタル学習フレームワークを提案する。
本手法は,メモリの削減と近似計算により,平均精度38.08%の高速化を実現する。
論文 参考訳(メタデータ) (2024-06-13T05:49:29Z) - Enhancing Kernel Flexibility via Learning Asymmetric Locally-Adaptive
Kernels [35.76925787221499]
本稿では,ラジアル基底関数(RBF)カーネルを強化するための訓練可能なパラメータとして,局所適応バンド幅(LAB)の概念を紹介する。
LAB RBFカーネルのパラメータはデータ依存であり、データセットによってその数は増加する可能性がある。
本稿では,非対称なカーネルリッジ回帰フレームワークを初めて確立し,反復的なカーネル学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-08T17:08:15Z) - Guided Deep Kernel Learning [42.53025115287688]
無限幅ニューラルネットワークを用いて深層カーネルを学習するための新しい手法を提案する。
提案手法は,新しいデータポイントに遭遇した場合に,DKL目標の信頼度に適応するために,NNGPの信頼性の高い不確実性推定を利用する。
論文 参考訳(メタデータ) (2023-02-19T13:37:34Z) - RFFNet: Large-Scale Interpretable Kernel Methods via Random Fourier Features [3.0079490585515347]
RFFNetは1次最適化によってカーネルの関連性をリアルタイムで学習するスケーラブルな手法である。
提案手法はメモリフットプリントが小さく,実行時,予測誤差が低く,関連する特徴を効果的に識別できることを示す。
私たちは、Scikit-learn標準APIと結果を完全に再現するためのコードに準拠した、効率的でPyTorchベースのライブラリをユーザに提供します。
論文 参考訳(メタデータ) (2022-11-11T18:50:34Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Meta-Learning Hypothesis Spaces for Sequential Decision-making [79.73213540203389]
オフラインデータ(Meta-KeL)からカーネルをメタ学習することを提案する。
穏やかな条件下では、推定されたRKHSが有効な信頼セットを得られることを保証します。
また,ベイズ最適化におけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2022-02-01T17:46:51Z) - Learning dynamical systems from data: A simple cross-validation perspective, part III: Irregularly-Sampled Time Series [8.918419734720613]
データから動的システムを学ぶためのシンプルで解釈可能な方法は、ベクトル場とカーネルを補間することである。
以前の成功にもかかわらず、この戦略は観測された時系列が定期的に時間内にサンプリングされないときに崩壊する。
本稿では,KFデータ適応カーネルの時間差を組み込むことで,動的システムのベクトル場を直接近似することで,この問題に対処する。
論文 参考訳(メタデータ) (2021-11-25T11:45:40Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Flow-based Kernel Prior with Application to Blind Super-Resolution [143.21527713002354]
カーネル推定は一般にブラインド画像超解像(SR)の鍵となる問題の一つである
本稿では,カーネルモデリングのための正規化フローベースカーネルプリレント(fkp)を提案する。
合成および実世界の画像の実験により、提案したFKPがカーネル推定精度を大幅に向上することを示した。
論文 参考訳(メタデータ) (2021-03-29T22:37:06Z) - Optimal Rates for Averaged Stochastic Gradient Descent under Neural
Tangent Kernel Regime [50.510421854168065]
平均勾配勾配勾配は極小収束率が得られることを示す。
本稿では、ReLUネットワークのNTKで指定されたターゲット関数を最適収束速度で学習できることを示す。
論文 参考訳(メタデータ) (2020-06-22T14:31:37Z) - Physics Informed Deep Kernel Learning [24.033468062984458]
物理インフォームドディープカーネル学習(PI-DKL)は、遅延源を持つ微分方程式で表される物理知識を利用する。
効率的かつ効果的な推論のために、潜伏変数を疎外し、崩壊したモデルエビデンスローバウンド(ELBO)を導出する。
論文 参考訳(メタデータ) (2020-06-08T22:43:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。