論文の概要: Learning Noise-Robust Stable Koopman Operator for Control with Physics-Informed Observables
- arxiv url: http://arxiv.org/abs/2408.06607v1
- Date: Tue, 13 Aug 2024 03:39:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-14 18:46:15.908656
- Title: Learning Noise-Robust Stable Koopman Operator for Control with Physics-Informed Observables
- Title(参考訳): 物理インフォームドオブザーバブル制御のための低騒音安定クープマン演算子の学習
- Authors: Shahriar Akbar Sakib, Shaowu Pan,
- Abstract要約: 非線形力学系のクープマン演算子に対する新しい学習フレームワークを提案する。
可観測物は、Polyflowによる制御方程式によって通知される。
雑音の頑健性の向上と長期安定性を保証するため,クープマン作用素の安定パラメータ化を設計した。
- 参考スコア(独自算出の注目度): 1.0742675209112622
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel learning framework for Koopman operator of nonlinear dynamical systems that is informed by the governing equation and guarantees long-time stability and robustness to noise. In contrast to existing frameworks where either ad-hoc observables or blackbox neural networks are used to construct observables in the extended dynamic mode decomposition (EDMD), our observables are informed by governing equations via Polyflow. To improve the noise robustness and guarantee long-term stability, we designed a stable parameterization of the Koopman operator together with a progressive learning strategy for roll-out recurrent loss. To further improve model performance in the phase space, a simple iterative strategy of data augmentation was developed. Numerical experiments of prediction and control of classic nonlinear systems with ablation study showed the effectiveness of the proposed techniques over several state-of-the-art practices.
- Abstract(参考訳): 本稿では,非線形力学系のクープマン演算子に対する新しい学習フレームワークを提案する。
拡張動的モード分解(EDMD)において,アドホック・オブザーバブルあるいはブラックボックス・ニューラル・ネットワークを用いてオブザーバブルを構築する既存のフレームワークとは対照的に,我々のオブザーバブルはPolyflowを介して制御方程式によって通知される。
ノイズロバスト性の向上と長期安定性を保証するため,我々は,繰り返し損失をロールアウトする進行学習戦略とともに,クープマン演算子の安定パラメータ化を設計した。
位相空間におけるモデル性能をさらに向上させるために、データ拡張の簡単な反復戦略を開発した。
アブレーション法による古典非線形システムの予測と制御に関する数値実験により, 提案手法の有効性が示された。
関連論文リスト
- Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
時間変化線形状態空間モデルは、ニューラルネットワークの数学的解釈可能な表現を得るための強力なツールである。
潜在変数推定のための既存の手法は、動的ノイズやシステムの非線形性に対して堅牢ではない。
本稿では,動的雑音に対するロバスト性を改善するために,分解モデルにおける潜在変数推定に対する確率的アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-29T18:58:39Z) - Fast Value Tracking for Deep Reinforcement Learning [7.648784748888187]
強化学習(Reinforcement Learning, RL)は、環境と対話するエージェントを作成することによって、シーケンシャルな意思決定問題に取り組む。
既存のアルゴリズムはしばしばこれらの問題を静的とみなし、期待される報酬を最大化するためにモデルパラメータの点推定に重点を置いている。
我々の研究は、カルマンパラダイムを活用して、Langevinized Kalman TemporalTDと呼ばれる新しい定量化およびサンプリングアルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-03-19T22:18:19Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - Provable Guarantees for Generative Behavior Cloning: Bridging Low-Level
Stability and High-Level Behavior [51.60683890503293]
生成モデルを用いた複雑な専門家による実演の行動クローニングに関する理論的枠組みを提案する。
任意の専門的軌跡の時間ごとのステップ分布に一致するトラジェクトリを生成することができることを示す。
論文 参考訳(メタデータ) (2023-07-27T04:27:26Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
本研究では,非線形力学モデルと安定化制御器のパラメトリック表現をデータから共同学習する手法として,インヒーレント・リャプノフ安定度制御(CoILS)を提案する。
新たな構成によって保証される学習力学の安定化性に加えて、学習した制御器は学習力学の忠実性に関する特定の仮定の下で真の力学を安定化することを示す。
論文 参考訳(メタデータ) (2023-03-06T14:21:42Z) - Accelerated Continuous-Time Approximate Dynamic Programming via
Data-Assisted Hybrid Control [0.0]
本研究では,アクター・クリティックな構造に動的運動量を組み込んだアルゴリズムを導入し,アフィン構造を入力とする連続時間動植物を制御する。
アルゴリズムに動的運動量を導入することにより、閉ループ系の収束特性を加速することができる。
論文 参考訳(メタデータ) (2022-04-27T05:36:51Z) - Recurrent Neural Network Controllers Synthesis with Stability Guarantees
for Partially Observed Systems [6.234005265019845]
本稿では、不確実な部分観測システムのための動的制御系として、リカレントニューラルネットワーク(RNN)の重要なクラスを考える。
本稿では、再パラメータ化空間における安定性条件を反復的に強制する計画的ポリシー勾配法を提案する。
数値実験により,本手法は,より少ないサンプルを用いて制御器の安定化を学習し,政策勾配よりも高い最終性能を達成することを示す。
論文 参考訳(メタデータ) (2021-09-08T18:21:56Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
本稿では,観測力学を強制線形系としてモデル化した新しい負荷予測手法を提案する。
固有線型力学の利用は、解釈可能性やパーシモニーの観点から、多くの望ましい性質を提供することを示す。
電力グリッドからの負荷データを用いたテストケースの結果が提示される。
論文 参考訳(メタデータ) (2020-10-08T20:25:52Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
未知の安定化線形力学系におけるモデルベース強化学習(RL)について検討する。
本研究では,環境を効果的に探索することで,基盤システムの高速安定化を証明できるアルゴリズムを提案する。
提案アルゴリズムはエージェント環境相互作用の時間ステップで$tildemathcalO(sqrtT)$ regretを達成した。
論文 参考訳(メタデータ) (2020-07-23T23:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。