論文の概要: A Novel Spatiotemporal Coupling Graph Convolutional Network
- arxiv url: http://arxiv.org/abs/2408.07087v1
- Date: Fri, 9 Aug 2024 02:02:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 15:18:29.467846
- Title: A Novel Spatiotemporal Coupling Graph Convolutional Network
- Title(参考訳): 新しい時空間結合グラフ畳み込みネットワーク
- Authors: Fanghui Bi,
- Abstract要約: 本稿では,新しいグラフ・コンテンポラル・ネットワーク(GCN)に基づく動的推定器,すなわちスペース・カップリングGCN(SCG)モデルについて述べる。
その結果、SCGは最先端技術と比較して精度が高く、ユーザやクラウドサービスへの強力な表現を学習できることを示した。
- 参考スコア(独自算出の注目度): 0.18130068086063336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Quality-of-Service (QoS) data capturing temporal variations in user-service interactions, are essential source for service selection and user behavior understanding. Approaches based on Latent Feature Analysis (LFA) have shown to be beneficial for discovering effective temporal patterns in QoS data. However, existing methods cannot well model the spatiality and temporality implied in dynamic interactions in a unified form, causing abundant accuracy loss for missing QoS estimation. To address the problem, this paper presents a novel Graph Convolutional Networks (GCNs)-based dynamic QoS estimator namely Spatiotemporal Coupling GCN (SCG) model with the three-fold ideas as below. First, SCG builds its dynamic graph convolution rules by incorporating generalized tensor product framework, for unified modeling of spatial and temporal patterns. Second, SCG combines the heterogeneous GCN layer with tensor factorization, for effective representation learning on bipartite user-service graphs. Third, it further simplifies the dynamic GCN structure to lower the training difficulties. Extensive experiments have been conducted on two large-scale widely-adopted QoS datasets describing throughput and response time. The results demonstrate that SCG realizes higher QoS estimation accuracy compared with the state-of-the-arts, illustrating it can learn powerful representations to users and cloud services.
- Abstract(参考訳): 動的品質・オブ・サービス(QoS)データは、サービス選択とユーザ行動理解に不可欠な情報源である。
潜在特徴分析(LFA)に基づくアプローチは、QoSデータに有効な時間パターンを発見するのに有用であることが示されている。
しかし、既存の手法では、統一形式での動的相互作用に暗示される空間性や時間性をうまくモデル化できないため、QoS推定の欠如に対して十分な精度の損失が生じる。
そこで本研究では,新しいグラフ畳み込みネットワーク(GCN)に基づく動的QoS推定器,すなわち時空間結合GCN(SCG)モデルを提案する。
まず、SCGは、空間パターンと時間パターンの統一モデリングのための一般化テンソル積フレームワークを取り入れた動的グラフ畳み込み規則を構築する。
第二に、SCGはヘテロジニアスGCN層をテンソル因子化と組み合わせ、二部的ユーザサービスグラフの効果的な表現学習を行う。
第3に、動的GCN構造をさらに単純化して、トレーニングの困難を減らします。
スループットと応答時間を記述する大規模な2つのQoSデータセットに対して、大規模な実験が行われた。
その結果、SCGは最先端技術と比較してQoS推定精度が高く、ユーザやクラウドサービスに強力な表現を学習できることを示した。
関連論文リスト
- GACL: Graph Attention Collaborative Learning for Temporal QoS Prediction [5.040979636805073]
時間的予測のための新しいグラフ協調学習(GACL)フレームワークを提案する。
動的ユーザサービスグラフ上に構築され、過去のインタラクションを包括的にモデル化する。
WS-DREAMデータセットの実験は、GACLが時間的予測のための最先端の手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2024-08-20T05:38:47Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
動的グラフ学習は、現実世界のシステムにおける進化の法則を明らかにすることを目的としている。
動的グラフ学習のための新しい連続状態空間モデルDyG-Mambaを提案する。
我々はDyG-Mambaがほとんどのデータセットで最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-08-13T15:21:46Z) - Spatial-temporal Graph Convolutional Networks with Diversified Transformation for Dynamic Graph Representation Learning [6.9243139068960895]
本研究では,多角化変換(STGCNDT)を用いた時空間グラフ畳み込みネットワークを提案する。
a) テンソルM-積を用いてテンソルM-積を個別に表現することなく統一グラフテンソル畳み込みネットワーク(GTCN)を構築するb) 時間的情報を集約するために複雑な時間的パターンをモデル化するためにGTNに3つの変換スキームを導入する、c) 多様化された変換のアンサンブルを構築して高い表現能力を得る、という3つの側面を含む。
論文 参考訳(メタデータ) (2024-08-05T09:40:47Z) - CTRL: Continuous-Time Representation Learning on Temporal Heterogeneous Information Network [32.42051167404171]
時間HINを用いた連続時間表現学習モデルを提案する。
我々は、高次ネットワーク構造の進化を捉えるために、将来の事象(サブグラフ)予測タスクでモデルを訓練する。
その結果,本モデルは性能を著しく向上し,様々な最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-05-11T03:39:22Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
時空間グラフニューラルネットワーク(ST-GNN)は、時間変動データの効率的なグラフ表現を学習する。
本稿では,ST-GNNの特性を再検討し,安定なグラフ安定性を示す。
解析の結果,ST-GNNは時間変化グラフ上での移動学習に適していることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:59:51Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
グラフ時間畳み込みニューラルネットワーク(GTCNN)を学習支援の原則アーキテクチャとして導入する。
このアプローチはどんな種類のプロダクトグラフでも機能し、パラメトリックグラフを導入して、プロダクトの時間的結合も学べます。
GTCNNが最先端のソリューションと好意的に比較できることを示す。
論文 参考訳(メタデータ) (2022-06-30T10:20:52Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。