論文の概要: Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
- arxiv url: http://arxiv.org/abs/2408.07201v1
- Date: Tue, 13 Aug 2024 21:10:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:45:31.845869
- Title: Quantification of total uncertainty in the physics-informed reconstruction of CVSim-6 physiology
- Title(参考訳): CVSim-6の物理インフォームド再構成における全不確実性の定量化
- Authors: Mario De Florio, Zongren Zou, Daniele E. Schiavazzi, George Em Karniadakis,
- Abstract要約: 本研究では,MC X-TFCを模擬した微分系の状態とパラメータの推定における総不確かさの分解について検討した。
MC X-TFCは、ヒト生理学の文脈で開発された6成分の固形ODEであるCVSim-6モデルに適用される。
- 参考スコア(独自算出の注目度): 1.6874375111244329
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: When predicting physical phenomena through simulation, quantification of the total uncertainty due to multiple sources is as crucial as making sure the underlying numerical model is accurate. Possible sources include irreducible aleatoric uncertainty due to noise in the data, epistemic uncertainty induced by insufficient data or inadequate parameterization, and model-form uncertainty related to the use of misspecified model equations. Physics-based regularization interacts in nontrivial ways with aleatoric, epistemic and model-form uncertainty and their combination, and a better understanding of this interaction is needed to improve the predictive performance of physics-informed digital twins that operate under real conditions. With a specific focus on biological and physiological models, this study investigates the decomposition of total uncertainty in the estimation of states and parameters of a differential system simulated with MC X-TFC, a new physics-informed approach for uncertainty quantification based on random projections and Monte-Carlo sampling. MC X-TFC is applied to a six-compartment stiff ODE system, the CVSim-6 model, developed in the context of human physiology. The system is analyzed by progressively removing data while estimating an increasing number of parameters and by investigating total uncertainty under model-form misspecification of non-linear resistance in the pulmonary compartment. In particular, we focus on the interaction between the formulation of the discrepancy term and quantification of model-form uncertainty, and show how additional physics can help in the estimation process. The method demonstrates robustness and efficiency in estimating unknown states and parameters, even with limited, sparse, and noisy data. It also offers great flexibility in integrating data with physics for improved estimation, even in cases of model misspecification.
- Abstract(参考訳): シミュレーションにより物理現象を予測する際には、基礎となる数値モデルが正確であることを確かめる上で、複数の情報源による総不確実性の定量化が重要である。
データ中のノイズによる既約アレターの不確実性、不十分なデータや不適切なパラメータ化によって引き起こされるてんかんの不確実性、不特定モデル方程式の使用に関するモデル形式の不確実性を含む可能性がある。
物理に基づく正規化は、非自明な方法でアレタリック、エピステミック、モデル-フォームの不確実性とそれらの組み合わせと相互作用し、実際の条件下で動作する物理インフォームドデジタルツインの予測性能を改善するために、この相互作用をよりよく理解する必要がある。
本研究は, 生物学的および生理学的モデルに着目し, MC X-TFCでシミュレートした差分系の状態とパラメータの推定における総不確かさの分解について検討した。
MC X-TFCは、ヒト生理学の文脈で開発された6成分の固形ODEであるCVSim-6モデルに適用される。
本システムは, パラメータ数の増加を推定しながら, 段階的にデータを除去し, 肺の非線形抵抗のモデル式不特定の下で, 全体不確実性を調査することによって解析する。
特に,不一致項の定式化とモデル形式の不確かさの定量化との相互作用に注目し,推理過程において物理がどう役立つかを示す。
この手法は、限られた、スパースでノイズの多いデータであっても、未知の状態とパラメータを推定する際の堅牢性と効率を示す。
また、モデル不特定の場合であっても、推定を改善するために物理とデータを統合する際の柔軟性も優れている。
関連論文リスト
- Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification [6.739642016124097]
本稿では,SciML(SciML)と不確実性定量化(UQ)の両タスクの実行が可能な代理モデリング手法として,物理制約付きカオス展開を提案する。
提案手法は,SciMLをUQにシームレスに統合し,その逆で,SciMLタスクの不確かさを効果的に定量化し,SciMLを利用してUQ関連タスクにおける不確実性評価を改善する。
論文 参考訳(メタデータ) (2024-02-23T06:04:15Z) - DiffHybrid-UQ: Uncertainty Quantification for Differentiable Hybrid
Neural Modeling [4.76185521514135]
本稿では,ハイブリッドニューラル微分可能モデルにおける有効かつ効率的な不確実性伝播と推定のための新しい手法DiffHybrid-UQを提案する。
具体的には,データノイズとてんかんの不確かさから生じるアレタリック不確かさと,モデル形状の相違やデータ空間のばらつきから生じるエピステマティック不確かさの両方を効果的に識別し,定量化する。
論文 参考訳(メタデータ) (2023-12-30T07:40:47Z) - Ensemble models outperform single model uncertainties and predictions
for operator-learning of hypersonic flows [43.148818844265236]
限られた高忠実度データに基づく科学機械学習(SciML)モデルのトレーニングは、これまで見たことのない状況に対する行動の迅速な予測に1つのアプローチを提供する。
高忠実度データは、探索されていない入力空間におけるSciMLモデルのすべての出力を検証するために、それ自体が限られた量である。
我々は3つの異なる不確実性メカニズムを用いてDeepONetを拡張した。
論文 参考訳(メタデータ) (2023-10-31T18:07:29Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
シミュレーションに基づく推論を用いて、波形をプラプシブルな生理的パラメータにマッピングする逆問題を解決する。
臨床応用5種類のバイオマーカーのin-silico不確実性解析を行った。
我々はMIMIC-III波形データベースを用いて,ビビオとシリカのギャップについて検討した。
論文 参考訳(メタデータ) (2023-07-26T02:34:57Z) - Measuring and Modeling Uncertainty Degree for Monocular Depth Estimation [50.920911532133154]
単分子深度推定モデル(MDE)の本質的な不適切さと順序感性は、不確かさの程度を推定する上で大きな課題となる。
本稿では,MDEモデルの不確かさを固有確率分布の観点からモデル化する。
新たなトレーニング正規化用語を導入することで、驚くほど単純な構成で、余分なモジュールや複数の推論を必要とせずに、最先端の信頼性で不確実性を推定できる。
論文 参考訳(メタデータ) (2023-07-19T12:11:15Z) - Learning thermodynamically constrained equations of state with
uncertainty [6.739642016124097]
この研究は、状態方程式(EOS)モデルを構築するためのデータ駆動機械学習アプローチを示す。
物理インフォームドガウス過程回帰(GPR)に基づく新しいフレームワークを提案する。
提案モデルを適用して,密度汎関数理論データと実験衝撃ユゴニオットデータの両方を用いて,炭素のダイヤモンド固体状態のEOSを学習する。
論文 参考訳(メタデータ) (2023-06-29T15:02:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Probabilities Are Not Enough: Formal Controller Synthesis for Stochastic
Dynamical Models with Epistemic Uncertainty [68.00748155945047]
複雑な力学系のモデルにおける不確実性を捉えることは、安全なコントローラの設計に不可欠である。
いくつかのアプローチでは、安全と到達可能性に関する時間的仕様を満たすポリシーを形式的な抽象化を用いて合成する。
我々の貢献は、ノイズ、不確実なパラメータ、外乱を含む連続状態モデルに対する新しい抽象的制御法である。
論文 参考訳(メタデータ) (2022-10-12T07:57:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Bayesian Calibration of imperfect computer models using Physics-informed
priors [0.0]
本稿では,計算機モデルの物理パラメータの不確かさを定量化するのに適した,計算効率の良いデータ駆動フレームワークを提案する。
我々はこれを完全にベイズ的枠組みに拡張し、物理パラメータの不確かさとモデル予測の定量化を可能にした。
この研究は、高血圧の個人治療のための心臓の血行動態の解釈可能なパラメータの必要性によって動機付けられている。
論文 参考訳(メタデータ) (2022-01-17T15:16:26Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。