論文の概要: A Survey on Immersive Cyber Situational Awareness Systems
- arxiv url: http://arxiv.org/abs/2408.07456v1
- Date: Wed, 14 Aug 2024 10:49:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:44:31.193060
- Title: A Survey on Immersive Cyber Situational Awareness Systems
- Title(参考訳): 没入型サイバー状況認識システムに関する調査
- Authors: Hussain Ahmad, Faheem Ullah, Rehan Jafri,
- Abstract要約: Immersive Cyber situational Awareness (ICSA) システムは、サイバーSAの認識、理解、投影のために、いくつかのユニークな可視化技術と相互作用機能を提供する。
本稿では,没入型可視化技術とインタラクション技術をICSAのレベルにマッピングすることで,ICSAシステムを設計・解析するための参照フレームワークを提案する。
- 参考スコア(独自算出の注目度): 3.379574469735166
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cyber situational awareness systems are increasingly used for creating cyber common operating pictures for cybersecurity analysis and education. However, these systems face data occlusion and convolution issues due to the burgeoning complexity, dimensionality, and heterogeneity of cybersecurity data, which damages cyber Situational Awareness (SA) of end-users. Moreover, conventional ways of human-computer interactions, such as mouse and keyboard, increase the mental effort and cognitive load of cybersecurity practitioners, when analyzing cyber situations of large-scale infrastructures. Therefore, immersive technologies, such as virtual reality, augmented reality, and mixed reality, are employed in the cybersecurity realm to create intuitive, engaging, and interactive cyber common operating pictures. The Immersive Cyber Situational Awareness (ICSA) systems provide several unique visualization techniques and interaction features for the perception, comprehension, and projection of cyber SA. However, there has been no attempt to comprehensively investigate and classify the existing state of the art in the use of immersive technologies for cyber SA. Therefore, in this paper, we have gathered, analyzed, and synthesized the existing body of knowledge on ICSA systems. In particular, our survey has identified visualization and interaction techniques, evaluation mechanisms, and different levels of cyber SA (i.e., perception, comprehension, and projection) for ICSA systems. Consequently, our survey has enabled us to propose: (i) a reference framework for designing and analyzing ICSA systems by mapping immersive visualization and interaction techniques to the different levels of ICSA; (ii) future research directions for advancing the state-of-the-art on ICSA systems; and (iii) an in-depth analysis of the industrial implications of ICSA systems to enhance cybersecurity operations.
- Abstract(参考訳): サイバー状況認識システムは、サイバーセキュリティ分析と教育のためのサイバー共通運用画像の作成にますます利用されている。
しかし、これらのシステムは、エンドユーザのサイバー状況認識(SA)を損なうサイバーセキュリティデータの急激な複雑さ、次元性、および不均一性のために、データの閉塞と畳み込みの問題に直面している。
さらに、マウスやキーボードのような従来の人間とコンピュータのインタラクションは、大規模インフラのサイバー状況を分析する際に、サイバーセキュリティ実践者の精神的努力と認知負荷を増加させる。
したがって、仮想現実、拡張現実、混合現実のような没入型技術は、直感的で魅力的でインタラクティブなサイバー共通操作画像を作成するためにサイバーセキュリティ領域に採用されている。
Immersive Cyber situational Awareness (ICSA) システムは、サイバーSAの認識、理解、投影のために、いくつかのユニークな可視化技術と相互作用機能を提供する。
しかし、サイバーSAの没入型技術の使用において、既存の最先端技術について包括的に調査し、分類する試みは行われていない。
そこで本研究では,ICSAシステムにおける既存の知識体系を収集,解析,合成した。
特に、ICSAシステムにおける可視化・インタラクション技術、評価メカニズム、および様々なレベルのサイバーSA(知覚、理解、投射)を特定した。
その結果、我々の調査により、我々はこう提案できた。
一 ICSAの異なるレベルに没入型可視化及びインタラクション技術をマッピングし、ICSAシステムを設計・解析するための基準枠組み
二 ICSAシステムの最先端化に向けた今後の研究の方向性
三 サイバーセキュリティ業務を強化するためのICSAシステムの産業的意味を詳細に分析すること。
関連論文リスト
- Explainable AI-based Intrusion Detection System for Industry 5.0: An Overview of the Literature, associated Challenges, the existing Solutions, and Potential Research Directions [3.99098935469955]
産業5.0は、製造において様々なタスクを実行するための人間と人工知能(AI)の協力に焦点を当てている。
これらのデバイスと、経済、健康、教育、防衛システムなど、さまざまな重要な分野における相互接続の巨大な関与は、いくつかの潜在的なセキュリティ欠陥を引き起こしている。
XAIは、侵入検知、マルウェア検出、フィッシング検出など、さまざまなサイバーセキュリティ分野において、非常に効果的で強力なツールであることが証明されている。
論文 参考訳(メタデータ) (2024-07-21T09:28:05Z) - A Synergistic Approach In Network Intrusion Detection By Neurosymbolic AI [6.315966022962632]
本稿では,ニューロシンボリック人工知能(NSAI)をネットワーク侵入検知システム(NIDS)に組み込む可能性について検討する。
NSAIは、ディープラーニングのデータ駆動の強みと、象徴的なAIの論理的推論を組み合わせて、サイバーセキュリティにおける動的な課題に取り組む。
NIDSにNSAIを組み込むことは、複雑なネットワーク脅威の検出と解釈の両方において、潜在的な進歩を示す。
論文 参考訳(メタデータ) (2024-06-03T02:24:01Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Securing the Digital World: Protecting smart infrastructures and digital
industries with Artificial Intelligence (AI)-enabled malware and intrusion
detection [0.0]
サイバー犯罪は 政府や企業 市民社会に対する 世界的な脅威として現れています
本稿では、現代のデジタルエコシステムを保護するため、AIによるサイバー脅威検出について検討する。
論文 参考訳(メタデータ) (2023-10-15T09:35:56Z) - Towards Ubiquitous Semantic Metaverse: Challenges, Approaches, and
Opportunities [68.03971716740823]
近年,拡張現実(AR)および仮想現実(VR)ユーザーのための没入型サイバーバーチャル体験に革命をもたらすために,ユビキタスセマンティック・メタバースが研究されている。
この調査は、ユビキタスメタバースにおける4つの基本システムコンポーネントの表現とインテリジェンスに焦点を当てる。
論文 参考訳(メタデータ) (2023-07-13T11:14:46Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
説明可能な人工知能(XAI)は、決定と行動に対して明確かつ解釈可能な説明を提供する機械学習モデルを作成することを目的としている。
ネットワークサイバーセキュリティの分野では、XAIは、サイバー脅威の振る舞いをよりよく理解することで、ネットワークセキュリティへのアプローチ方法に革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-03-07T22:54:18Z) - Machine Learning in Generation, Detection, and Mitigation of
Cyberattacks in Smart Grid: A Survey [1.3299946892361474]
スマートグリッド(スマートグリッド、英: Smart grid、SG)は、現代のサイバー・物理機器を利用した複雑なサイバー物理システムである。
サイバー攻撃は、最先端のシステムの使用と進歩に直面する主要な脅威である。
機械学習(ML)は、攻撃者やシステムオペレーターによるSGのサイバー攻撃を悪用し、防御するために使用されている。
論文 参考訳(メタデータ) (2020-09-01T05:16:51Z) - Towards an Interface Description Template for AI-enabled Systems [77.34726150561087]
再利用(Reuse)は、システムアーキテクチャを既存のコンポーネントでインスタンス化しようとする、一般的なシステムアーキテクチャのアプローチである。
現在、コンポーネントが当初目的としていたものと異なるシステムで運用する可搬性を評価するために必要な情報の選択をガイドするフレームワークは存在しない。
我々は、AI対応コンポーネントの主情報をキャプチャするインターフェイス記述テンプレートの確立に向けて、現在進行中の作業について述べる。
論文 参考訳(メタデータ) (2020-07-13T20:30:26Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。