論文の概要: Usefulness of data flow diagrams and large language models for security threat validation: a registered report
- arxiv url: http://arxiv.org/abs/2408.07537v2
- Date: Thu, 15 Aug 2024 09:30:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 12:40:10.644908
- Title: Usefulness of data flow diagrams and large language models for security threat validation: a registered report
- Title(参考訳): データフロー図と大規模言語モデルのセキュリティ脅威検証における有用性:登録報告
- Authors: Winnie Bahati Mbaka, Katja Tuma,
- Abstract要約: 脅威分析とリスクアセスメントは、新しいオードシステムのセキュリティ脅威を特定するために使用される。
完了の定義が欠如しているため、特定された脅威を検証する必要があるため、分析が遅くなる。
既存の文献では、脅威分析の全体的なパフォーマンスに焦点が当てられているが、これまでの研究では、アナリストが特定されたセキュリティ脅威を効果的に検証する前に、どの程度の深さを掘り下げなければならないかを調査していない。
- 参考スコア(独自算出の注目度): 1.8876415010297898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The arrival of recent cybersecurity standards has raised the bar for security assessments in organizations, but existing techniques don't always scale well. Threat analysis and risk assessment are used to identify security threats for new or refactored systems. Still, there is a lack of definition-of-done, so identified threats have to be validated which slows down the analysis. Existing literature has focused on the overall performance of threat analysis, but no previous work has investigated how deep must the analysts dig into the material before they can effectively validate the identified security threats. We propose a controlled experiment with practitioners to investigate whether some analysis material (like LLM-generated advice) is better than none and whether more material (the system's data flow diagram and LLM-generated advice) is better than some material. In addition, we present key findings from running a pilot with 41 MSc students, which are used to improve the study design. Finally, we also provide an initial replication package, including experimental material and data analysis scripts and a plan to extend it to include new materials based on the final data collection campaign with practitioners (e.g., pre-screening questions).
- Abstract(参考訳): 最近のサイバーセキュリティ標準の到来は、組織におけるセキュリティ評価の基準を高めていますが、既存のテクニックが常にうまくスケールしているとは限らないのです。
脅威分析とリスクアセスメントは、新規またはリファクタリングされたシステムのセキュリティ脅威を特定するために使用される。
それでも、Doneの定義が欠如しているため、特定された脅威を検証する必要があるため、分析が遅くなる。
既存の文献では、脅威分析の全体的なパフォーマンスに焦点が当てられているが、これまでの研究では、アナリストが特定されたセキュリティ脅威を効果的に検証する前に、どの程度の深さを掘り下げなければならないかを調査していない。
本研究は,LLM生成アドバイスのような分析材料が,それよりも優れているか,さらに多くの材料(システムデータフロー図,LLM生成アドバイス)が,ある材料よりも優れているかを検討するための,実践者による制御実験である。
また, 41人のMSc学生を対象に, パイロットテストによる重要な知見を提示し, 学習設計の改善に利用した。
最後に、実験材料やデータ分析スクリプトを含む初期複製パッケージも提供し、実践者による最終データ収集キャンペーン(例えば、事前スクリーニング質問)に基づいて、新たな資料を含むように拡張する計画を立てています。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - CTISum: A New Benchmark Dataset For Cyber Threat Intelligence Summarization [14.287652216484863]
CTI要約タスクのための新しいベンチマークであるCTISumを提案する。
攻撃プロセスの重要性を考慮すると,攻撃プロセスの要約の詳細なサブタスクが提案されている。
論文 参考訳(メタデータ) (2024-08-13T02:25:16Z) - Enhancing Cyber Security through Predictive Analytics: Real-Time Threat Detection and Response [0.0]
調査では、ネットワークトラフィックとセキュリティイベントの2000インスタンスを含む、Kaggleのデータセットを使用している。
その結果,予測分析は脅威の警戒と応答時間を高めることが示唆された。
本稿では,予防的サイバーセキュリティ戦略開発における重要な要素として,予測分析を提唱する。
論文 参考訳(メタデータ) (2024-07-15T16:11:34Z) - Safety in Graph Machine Learning: Threats and Safeguards [84.26643884225834]
社会的利益にもかかわらず、最近の研究はグラフMLモデルの普及に伴う重要な安全性上の懸念を浮き彫りにしている。
安全性を重視した設計が欠如しているため、これらのモデルは信頼性の低い予測を導き、一般化性の低下を示し、データの機密性を侵害することができる。
金融詐欺検出のような高額なシナリオでは、これらの脆弱性は個人と社会の両方を全般的に危険に晒す可能性がある。
論文 参考訳(メタデータ) (2024-05-17T18:11:11Z) - Large Language Models for Cyber Security: A Systematic Literature Review [14.924782327303765]
サイバーセキュリティ(LLM4Security)における大規模言語モデルの適用に関する文献の総合的なレビューを行う。
LLMは、脆弱性検出、マルウェア分析、ネットワーク侵入検出、フィッシング検出など、幅広いサイバーセキュリティタスクに応用されている。
第3に、細調整、転送学習、ドメイン固有の事前トレーニングなど、特定のサイバーセキュリティドメインにLLMを適用するための有望なテクニックをいくつか特定する。
論文 参考訳(メタデータ) (2024-05-08T02:09:17Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
大規模言語モデル(LLM)のオープンソース化は、アプリケーション開発、イノベーション、科学的進歩を加速させる。
我々の調査は、この信念に対する重大な監視を露呈している。
我々の研究は、慎重に設計されたデモを配置することにより、ベースLSMが悪意のある命令を効果的に解釈し実行できることを実証する。
論文 参考訳(メタデータ) (2024-04-16T13:22:54Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
アタックグラフ(AG)は、コンピュータネットワークに対するマルチステップ攻撃に対するサイバーリスクアセスメントをサポートする最も適したソリューションである。
現在の解決策は、アルゴリズムの観点から生成問題に対処し、生成が完了した後のみ解析を仮定することである。
本稿では,アナリストがいつでもシステムに問い合わせることのできる新しいワークフローを通じて,従来のAG分析を再考する。
論文 参考訳(メタデータ) (2023-12-27T10:44:58Z) - Poisoning Attacks and Defenses on Artificial Intelligence: A Survey [3.706481388415728]
データ中毒攻撃は、トレーニングフェーズ中にモデルに供給されたデータサンプルを改ざんして、推論フェーズ中にモデルの精度を低下させる攻撃の一種である。
この研究は、この種の攻撃に対処する最新の文献で見つかった最も関連性の高い洞察と発見をまとめたものである。
実環境下での幅広いMLモデルに対するデータ中毒の影響を比較検討し,本研究の徹底的な評価を行った。
論文 参考訳(メタデータ) (2022-02-21T14:43:38Z) - A Review of Topological Data Analysis for Cybersecurity [1.0878040851638]
トポロジカルデータ解析(TDA)は、代数的トポロジの技法を用いて、データの高レベル構造を研究する。
我々は、サイバーセキュリティデータサイエンスを改善する強力な可能性を持つ、有望な新しい領域について、研究者に強調したい。
論文 参考訳(メタデータ) (2022-02-16T13:03:52Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。