論文の概要: Theoretical and Practical Progress in Hyperspectral Pixel Unmixing with Large Spectral Libraries from a Sparse Perspective
- arxiv url: http://arxiv.org/abs/2408.07580v1
- Date: Wed, 14 Aug 2024 14:24:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 13:03:36.485877
- Title: Theoretical and Practical Progress in Hyperspectral Pixel Unmixing with Large Spectral Libraries from a Sparse Perspective
- Title(参考訳): 広いスペクトルライブラリーを用いたハイパースペクトルレンズアンミキシングのスパース視点による理論的・実践的進歩
- Authors: Jade Preston, William Basener,
- Abstract要約: ハイパースペクトルアンミキシング(Hyperspectral unmixing)は、観察されたピクセルスペクトルから個々の物質とそれぞれの存在量を決定する過程である。
正規化を用いて数値解を生成できる回帰法を多数評価する。
提案手法は,高スペクトル画像の現象学に対応する先行データから導出できる手法が,予測性能に最適な先行データよりも優れていることを結論付けている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hyperspectral unmixing is the process of determining the presence of individual materials and their respective abundances from an observed pixel spectrum. Unmixing is a fundamental process in hyperspectral image analysis, and is growing in importance as increasingly large spectral libraries are created and used. Unmixing is typically done with ordinary least squares (OLS) regression. However, unmixing with large spectral libraries where the materials present in a pixel are not a priori known, solving for the coefficients in OLS requires inverting a non-invertible matrix from a large spectral library. A number of regression methods are available that can produce a numerical solution using regularization, but with considerably varied effectiveness. Also, simple methods that are unpopular in the statistics literature (i.e. step-wise regression) are used with some level of effectiveness in hyperspectral analysis. In this paper, we provide a thorough performance evaluation of the methods considered, evaluating methods based on how often they select the correct materials in the models. Investigated methods include ordinary least squares regression, non-negative least squares regression, ridge regression, lasso regression, step-wise regression and Bayesian model averaging. We evaluated these unmixing approaches using multiple criteria: incorporation of non-negative abundances, model size, accurate mineral detection and root mean squared error (RMSE). We provide a taxonomy of the regression methods, showing that most methods can be understood as Bayesian methods with specific priors. We conclude that methods that can be derived with priors that correspond to the phenomenology of hyperspectral imagery outperform those with priors that are optimal for prediction performance under the assumptions of ordinary least squares linear regression.
- Abstract(参考訳): ハイパースペクトルアンミキシング(Hyperspectral unmixing)は、観察されたピクセルスペクトルから個々の物質とそれぞれの存在量を決定する過程である。
アンミキシングはハイパースペクトル画像解析の基本的なプロセスであり、ますます大きなスペクトルライブラリの作成と利用が進むにつれて、重要性が増している。
アンミックスは通常、通常の最小二乗回帰(OLS)を用いて行われる。
しかし、画素に存在する物質が既知でない大きなスペクトルライブラリと混ざり合い、ORSの係数を解くには、大きなスペクトルライブラリから非可逆行列を逆転する必要がある。
正規化を用いて数値解を生成できるレグレッション法はいくつか用意されているが、その効果はかなり多様である。
また、統計学の文献(すなわち、ステップワイド回帰)で不人気な単純な手法は、ハイパースペクトル解析においてある程度の有効性で用いられる。
本稿では,モデル内の正しい材料をどの程度の頻度で選択するかに基づいて,提案手法の徹底的な性能評価を行う。
研究手法としては、通常最小二乗回帰、非負最小二乗回帰、リッジ回帰、ラッソ回帰、ステップワイズ回帰、ベイズ平均化などがある。
非負の量, モデルサイズ, 正確なミネラル検出, 根平均二乗誤差 (RMSE) を取り入れた。
我々は回帰法を分類し、ほとんどの方法が特定の先行するベイズ的手法として理解可能であることを示す。
提案手法は,従来の最小二乗線形回帰の仮定の下での予測性能に最適である先行画像よりも,高スペクトル画像の現象学に対応する先行画像から導出できる手法が優れていると結論付けている。
関連論文リスト
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
我々は、パラメトリックな$sqrt n $-rateで収束する、最も近い隣人の新しい修正とマッチング推定器を開発する。
我々は,非パラメトリック関数推定器は含まないこと,特に標本サイズ依存パラメータの平滑化には依存していないことを強調する。
論文 参考訳(メタデータ) (2024-07-11T13:28:34Z) - Statistical Agnostic Regression: a machine learning method to validate regression models [0.0]
本稿では,機械学習に基づく線形回帰モデルの統計的意義を評価するために,統計的回帰(Agnostic Regression, SAR)を導入する。
我々は、説明的(機能)変数と反応(ラベル)変数の間の集団における線形関係の存在を結論付けるために、少なくとも1-eta$の確率で十分な証拠が存在することを保証するしきい値を定義する。
論文 参考訳(メタデータ) (2024-02-23T09:19:26Z) - Precise Asymptotics for Spectral Methods in Mixed Generalized Linear Models [31.58736590532443]
混合一般化線形モデルにおいて、統計的に独立な2つの信号を推定する問題を考える。
我々の特徴付けは、ランダム行列、自由確率、および近似メッセージパッシングアルゴリズムの理論からのツールの混合を利用する。
論文 参考訳(メタデータ) (2022-11-21T11:35:25Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
最小二乗回帰問題を無限次元出力で解くために,還元ランク法を提案し,解析する。
提案手法の学習バウンダリを導出し、フルランク手法と比較して統計的性能の設定を改善する研究を行う。
論文 参考訳(メタデータ) (2022-11-16T15:07:00Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Rethinking Collaborative Metric Learning: Toward an Efficient
Alternative without Negative Sampling [156.7248383178991]
コラボレーティブ・メトリック・ラーニング(CML)パラダイムはレコメンデーション・システム(RS)分野に広く関心を集めている。
負のサンプリングが一般化誤差のバイアス付き推定に繋がることがわかった。
そこで我々は,SFCML (textitSampling-Free Collaborative Metric Learning) という名前のCMLに対して,負のサンプリングを伴わない効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-06-23T08:50:22Z) - RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction
for High-dimensional Uncertainty Quantification [12.826754199680474]
マルチフィデリティモデリングは、少量の正確なデータしか入手できない場合でも、正確な推測を可能にする。
高忠実度モデルと1つ以上の低忠実度モデルを組み合わせることで、多忠実度法は興味のある量の正確な予測を行うことができる。
本稿では,回転多要素ガウス過程の回帰に基づく新しい次元削減フレームワークとベイズ能動学習手法を提案する。
論文 参考訳(メタデータ) (2022-04-11T01:20:35Z) - Nonlinear Independent Component Analysis for Continuous-Time Signals [85.59763606620938]
このプロセスの混合物の観察から多次元音源過程を復元する古典的問題を考察する。
このリカバリは、この混合物が十分に微分可能で可逆な関数によって与えられる場合、多くの一般的なプロセスのモデル(座標の順序と単調スケーリングまで)に対して可能であることを示す。
論文 参考訳(メタデータ) (2021-02-04T20:28:44Z) - Detangling robustness in high dimensions: composite versus
model-averaged estimation [11.658462692891355]
ロバスト法は、実際にはユビキタスであるが、正規化推定や高次元の文脈ではまだ完全には理解されていない。
本稿では,これらの設定におけるロバスト性をさらに研究し,予測に焦点を当てたツールボックスを提供する。
論文 参考訳(メタデータ) (2020-06-12T20:40:15Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z) - Robust Gaussian Process Regression with a Bias Model [0.6850683267295248]
既存のほとんどのアプローチは、重い尾の分布から誘導される非ガウス的確率に、外れやすいガウス的確率を置き換えるものである。
提案手法は、未知の回帰関数の雑音および偏りの観測として、外れ値をモデル化する。
バイアス推定に基づいて、ロバストなGP回帰を標準のGP回帰問題に還元することができる。
論文 参考訳(メタデータ) (2020-01-14T06:21:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。