Introduction to Reinforcement Learning
- URL: http://arxiv.org/abs/2408.07712v3
- Date: Tue, 03 Dec 2024 16:17:32 GMT
- Title: Introduction to Reinforcement Learning
- Authors: Majid Ghasemi, Dariush Ebrahimi,
- Abstract summary: Reinforcement Learning (RL) focuses on training agents to make decisions by interacting with their environment to maximize cumulative rewards.
This paper provides an overview of RL, covering its core concepts, methodologies, and resources for further learning.
- Score: 2.52299400625445
- License:
- Abstract: Reinforcement Learning (RL), a subfield of Artificial Intelligence (AI), focuses on training agents to make decisions by interacting with their environment to maximize cumulative rewards. This paper provides an overview of RL, covering its core concepts, methodologies, and resources for further learning. It offers a thorough explanation of fundamental components such as states, actions, policies, and reward signals, ensuring readers develop a solid foundational understanding. Additionally, the paper presents a variety of RL algorithms, categorized based on the key factors such as model-free, model-based, value-based, policy-based, and other key factors. Resources for learning and implementing RL, such as books, courses, and online communities are also provided. By offering a clear, structured introduction, this paper aims to simplify the complexities of RL for beginners, providing a straightforward pathway to understanding.
Related papers
- A Comprehensive Survey of Reinforcement Learning: From Algorithms to Practical Challenges [2.2448567386846916]
Reinforcement Learning (RL) has emerged as a powerful paradigm in Artificial Intelligence (AI)
This paper presents a comprehensive survey of RL, meticulously analyzing a wide range of algorithms.
We offer practical insights into the selection and implementation of RL algorithms, addressing common challenges like convergence, stability, and the exploration-exploitation dilemma.
arXiv Detail & Related papers (2024-11-28T03:53:14Z) - A Knowledge-Injected Curriculum Pretraining Framework for Question Answering [70.13026036388794]
We propose a general Knowledge-Injected Curriculum Pretraining framework (KICP) to achieve comprehensive KG learning and exploitation for Knowledge-based question answering tasks.
The KI module first injects knowledge into the LM by generating KG-centered pretraining corpus, and generalizes the process into three key steps.
The KA module learns knowledge from the generated corpus with LM equipped with an adapter as well as keeps its original natural language understanding ability.
The CR module follows human reasoning patterns to construct three corpora with increasing difficulties of reasoning, and further trains the LM from easy to hard in a curriculum manner.
arXiv Detail & Related papers (2024-03-11T03:42:03Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Towards an Information Theoretic Framework of Context-Based Offline Meta-Reinforcement Learning [48.79569442193824]
We show that COMRL algorithms are essentially optimizing the same mutual information objective between the task variable $M$ and its latent representation $Z$ by implementing various approximate bounds.
As demonstrations, we propose a supervised and a self-supervised implementation of $I(Z; M)$, and empirically show that the corresponding optimization algorithms exhibit remarkable generalization across a broad spectrum of RL benchmarks.
This work lays the information theoretic foundation for COMRL methods, leading to a better understanding of task representation learning in the context of reinforcement learning.
arXiv Detail & Related papers (2024-02-04T09:58:42Z) - Understanding Reinforcement Learning Algorithms: The Progress from Basic
Q-learning to Proximal Policy Optimization [0.6091702876917281]
reinforcement learning (RL) has a unique setting, jargon, and mathematics that can be intimidating for those new to the field or artificial intelligence.
This paper provides a clear and concise overview of the fundamental principles of RL and covers the different types of RL algorithms.
The presentation of the paper is aligned with the historical progress of the field, from the early 1980s Q-learning algorithm to the current state-of-the-art algorithms such as TD3, PPO, and offline RL.
arXiv Detail & Related papers (2023-03-31T17:24:51Z) - INFOrmation Prioritization through EmPOWERment in Visual Model-Based RL [90.06845886194235]
We propose a modified objective for model-based reinforcement learning (RL)
We integrate a term inspired by variational empowerment into a state-space model based on mutual information.
We evaluate the approach on a suite of vision-based robot control tasks with natural video backgrounds.
arXiv Detail & Related papers (2022-04-18T23:09:23Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Contextualize Me -- The Case for Context in Reinforcement Learning [49.794253971446416]
Contextual Reinforcement Learning (cRL) provides a framework to model such changes in a principled manner.
We show how cRL contributes to improving zero-shot generalization in RL through meaningful benchmarks and structured reasoning about generalization tasks.
arXiv Detail & Related papers (2022-02-09T15:01:59Z) - Explainable Reinforcement Learning for Broad-XAI: A Conceptual Framework
and Survey [0.7366405857677226]
Reinforcement Learning (RL) methods provide a potential backbone for the cognitive model required for the development of Broad-XAI.
RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems.
This paper aims to introduce a conceptual framework, called the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI.
arXiv Detail & Related papers (2021-08-20T05:18:50Z) - Incorporating Relational Background Knowledge into Reinforcement
Learning via Differentiable Inductive Logic Programming [8.122270502556374]
We propose a novel deepReinforcement Learning (RRL) based on a differentiable Inductive Logic Programming (ILP)
We show the efficacy of this novel RRL framework using environments such as BoxWorld, GridWorld as well as relational reasoning for the Sort-of-CLEVR dataset.
arXiv Detail & Related papers (2020-03-23T16:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.