論文の概要: Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal
- arxiv url: http://arxiv.org/abs/2408.07847v1
- Date: Wed, 14 Aug 2024 23:09:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 15:28:57.418993
- Title: Time-inversion of spatiotemporal beam dynamics using uncertainty-aware latent evolution reversal
- Title(参考訳): 不確実性を考慮した潜在進化反転を用いた時空間ビームダイナミクスの時間反転
- Authors: Mahindra Rautela, Alan Williams, Alexander Scheinker,
- Abstract要約: 本稿では,フォワードビームダイナミクスの時相を考慮したリバースラテント進化モデル(rLEM)を提案する。
この2段階の自己教師型深層学習フレームワークでは、空調オートエンコーダ(CVAE)を用いて荷電粒子ビームの6次元空間投影を低次元潜在分布に投影する。
次に,Long Short-Term Memory (LSTM) ネットワークを用いて,潜在空間における逆時間力学を自動回帰的に学習する。
- 参考スコア(独自算出の注目度): 46.348283638884425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Charged particle dynamics under the influence of electromagnetic fields is a challenging spatiotemporal problem. Many high performance physics-based simulators for predicting behavior in a charged particle beam are computationally expensive, limiting their utility for solving inverse problems online. The problem of estimating upstream six-dimensional phase space given downstream measurements of charged particles in an accelerator is an inverse problem of growing importance. This paper introduces a reverse Latent Evolution Model (rLEM) designed for temporal inversion of forward beam dynamics. In this two-step self-supervised deep learning framework, we utilize a Conditional Variational Autoencoder (CVAE) to project 6D phase space projections of a charged particle beam into a lower-dimensional latent distribution. Subsequently, we autoregressively learn the inverse temporal dynamics in the latent space using a Long Short-Term Memory (LSTM) network. The coupled CVAE-LSTM framework can predict 6D phase space projections across all upstream accelerating sections based on single or multiple downstream phase space measurements as inputs. The proposed model also captures the aleatoric uncertainty of the high-dimensional input data within the latent space. This uncertainty, which reflects potential uncertain measurements at a given module, is propagated through the LSTM to estimate uncertainty bounds for all upstream predictions, demonstrating the robustness of the LSTM against in-distribution variations in the input data.
- Abstract(参考訳): 電磁場の影響下での荷電粒子動力学は時空間問題である。
荷電粒子ビームの挙動を予測するための高性能な物理ベースシミュレータの多くは計算コストが高く、オンラインでの逆問題の解法に限界がある。
加速器内の荷電粒子の下流測定により上流6次元位相空間を推定する問題は、増大する重要性の逆問題である。
本稿では、フォワードビームダイナミクスの時間反転を目的としたリバースラテント進化モデル(rLEM)を提案する。
この2段階の自己教師型ディープラーニングフレームワークでは,荷電粒子ビームの6次元位相空間投影を低次元潜在分布に投影するために,条件変分オートエンコーダ(CVAE)を用いる。
その後、Long Short-Term Memory (LSTM) ネットワークを用いて、潜時空間の逆時間力学を自己回帰的に学習する。
結合されたCVAE-LSTMフレームワークは、入力として単一または複数の下流位相空間の測定に基づいて、上流加速区間の6次元位相空間の投影を予測できる。
提案モデルはまた,潜在空間内の高次元入力データのアレータティック不確かさをキャプチャする。
この不確実性は、与えられたモジュールにおける潜在的不確実性の測定を反映し、LSTMを通して全ての上流予測に対する不確実性境界を推定し、入力データの非分布変動に対するLSTMの堅牢性を示す。
関連論文リスト
- Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting [16.782154479264126]
時間的要因間の複雑な相互作用により、バックボーン・時間的トラフィックフローを予測することが課題となる。
既存のアプローチでは、これらの次元を分離し、重要な相互依存を無視している。
本稿では,空間的および時間的依存関係の両方をキャプチャする統合フレームワークであるSanonymous-Temporal Unitized Unitized Cell (ASTUC)を紹介する。
論文 参考訳(メタデータ) (2024-11-14T07:34:31Z) - A conditional latent autoregressive recurrent model for generation and forecasting of beam dynamics in particle accelerators [46.348283638884425]
本稿では,加速器内の荷電粒子のダイナミクスを学習するための2段階の非教師付きディープラーニングフレームワークであるLatent Autoregressive Recurrent Model (CLARM)を提案する。
CLARMは、潜在空間表現をキャプチャしてデコードすることで、様々な加速器サンプリングモジュールでプロジェクションを生成することができる。
その結果,提案手法の予測能力と生成能力は,様々な評価指標と比較した場合に有望であることが示唆された。
論文 参考訳(メタデータ) (2024-03-19T22:05:17Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5は、長距離時間モデリングのための効率的な変種である。
トランスフォーマーとConvNISTTMは、長い水平移動実験において、ConvLSTMより3倍速く、トランスフォーマーより400倍速くサンプルを生成する一方で、大幅に性能が向上した。
論文 参考訳(メタデータ) (2023-10-30T16:11:06Z) - Generative Modeling with Phase Stochastic Bridges [49.4474628881673]
拡散モデル(DM)は、連続入力のための最先端の生成モデルを表す。
我々はtextbfphase space dynamics に基づく新しい生成モデリングフレームワークを提案する。
我々のフレームワークは、動的伝播の初期段階において、現実的なデータポイントを生成する能力を示す。
論文 参考訳(メタデータ) (2023-10-11T18:38:28Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
流れのダイナミクスを捉える低次モデル (ROM) はシミュレーションの計算コストの削減に重要である。
この研究は、フローのダイナミクスと特性を効果的にキャプチャする最小次元モデルのためのデータ駆動フレームワークを示す。
我々はこれをカオス的かつ断続的な行動からなる体制におけるコルモゴロフ流に適用する。
論文 参考訳(メタデータ) (2022-10-29T23:05:39Z) - The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
and Anomalous Diffusion [29.489737359897312]
勾配降下法(SGD)を訓練した深部ニューラルネットワークの限界ダイナミクスについて検討する。
これらのダイナミクスを駆動する重要な要素は、本来のトレーニング損失ではなく、位相空間の振動を引き起こす速度と確率電流を暗黙的に規則化する修正損失の組み合わせであることを示す。
論文 参考訳(メタデータ) (2021-07-19T20:18:57Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
本稿では,時間変化システムを対象とした適応機械学習手法を提案する。
我々は,エンコーダデコーダCNNのエンコーダ部出力において,非常に高次元(N>100k)の入力を低次元(N2)潜在空間にマッピングする。
そこで本手法では,割り込みを伴わないフィードバックに基づいて,内部の相関関係を学習し,その進化をリアルタイムで追跡する。
論文 参考訳(メタデータ) (2021-07-13T16:05:28Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
最大21キュービットの雑音量子フーリエ変換プロセッサをシミュレートする。
我々は、デジタルエラーモデルに頼るのではなく、微視的な散逸過程を考慮に入れている。
動作中の消散機構によっては、入力状態の選択が量子アルゴリズムの性能に強い影響を与えることが示される。
論文 参考訳(メタデータ) (2021-02-08T14:55:44Z) - A nudged hybrid analysis and modeling approach for realtime wake-vortex
transport and decay prediction [0.0]
流れの縮小秩序モデル (ROM) を強化するための長期記憶 (LSTM) ヌージングフレームワークは, 騒音測定を利用して航空交通改善を行った。
我々は、現実的な応用において、初期および境界条件、モデルパラメータ、および測定に不確実性が存在するという事実に基づいて構築する。
LSTM nudging (LSTM-N) 法では,不完全なGROMと不確実な状態推定を組み合わせた予測とスパーシアンセンサ測定を併用して,動的データ同化フレームワークにおいてより信頼性の高い予測を行う。
論文 参考訳(メタデータ) (2020-08-05T23:47:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。