Quantum-inspired Interpretable Deep Learning Architecture for Text Sentiment Analysis
- URL: http://arxiv.org/abs/2408.07891v1
- Date: Thu, 15 Aug 2024 02:32:50 GMT
- Title: Quantum-inspired Interpretable Deep Learning Architecture for Text Sentiment Analysis
- Authors: Bingyu Li, Da Zhang, Zhiyuan Zhao, Junyu Gao, Yuan Yuan,
- Abstract summary: We propose a quantum-inspired deep learning architecture that combines QM principles with deep learning models for text sentiment analysis.
Specifically, we analyze the commonalities between text representation and QM principles to design a quantum-inspired text representation method.
We also design a feature extraction layer based on long short-term memory (LSTM) networks and self-attention mechanisms (SAMs)
- Score: 26.284684575675048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text has become the predominant form of communication on social media, embedding a wealth of emotional nuances. Consequently, the extraction of emotional information from text is of paramount importance. Despite previous research making some progress, existing text sentiment analysis models still face challenges in integrating diverse semantic information and lack interpretability. To address these issues, we propose a quantum-inspired deep learning architecture that combines fundamental principles of quantum mechanics (QM principles) with deep learning models for text sentiment analysis. Specifically, we analyze the commonalities between text representation and QM principles to design a quantum-inspired text representation method and further develop a quantum-inspired text embedding layer. Additionally, we design a feature extraction layer based on long short-term memory (LSTM) networks and self-attention mechanisms (SAMs). Finally, we calculate the text density matrix using the quantum complex numbers principle and apply 2D-convolution neural networks (CNNs) for feature condensation and dimensionality reduction. Through a series of visualization, comparative, and ablation experiments, we demonstrate that our model not only shows significant advantages in accuracy and efficiency compared to previous related models but also achieves a certain level of interpretability by integrating QM principles. Our code is available at QISA.
Related papers
- Representation Learning with Parameterised Quantum Circuits for Advancing Speech Emotion Recognition [37.98283871637917]
Speech Emotion Recognition (SER) is a complex task in human-computer interaction due to the intricate dependencies of features and the overlapping nature of emotional expressions conveyed through speech.
This paper introduces a hybrid classical-quantum framework that integrates volutionised Quantum Circuits with conventional Conal Neural Network (CNN) architectures.
By leveraging quantum properties such as superposition and entanglement, the proposed model enhances feature representation and captures complex dependencies more effectively than classical methods.
arXiv Detail & Related papers (2025-01-21T11:23:38Z) - MAPS: Advancing Multi-Modal Reasoning in Expert-Level Physical Science [62.96434290874878]
Current Multi-Modal Large Language Models (MLLM) have shown strong capabilities in general visual reasoning tasks.
We develop a new framework, named Multi-Modal Scientific Reasoning with Physics Perception and Simulation (MAPS) based on an MLLM.
MAPS decomposes expert-level multi-modal reasoning task into physical diagram understanding via a Physical Perception Model (PPM) and reasoning with physical knowledge via a simulator.
arXiv Detail & Related papers (2025-01-18T13:54:00Z) - Multimodal Quantum Natural Language Processing: A Novel Framework for using Quantum Methods to Analyse Real Data [0.0]
This thesis explores how quantum computational methods can enhance the compositional modeling of language.
Specifically, it advances Multimodal Quantum Natural Language Processing (MQNLP) by applying the Lambeq toolkit.
Results indicate that syntax-based models, particularly DisCoCat and TreeReader, excel in effectively capturing grammatical structures.
arXiv Detail & Related papers (2024-10-29T19:03:43Z) - QIXAI: A Quantum-Inspired Framework for Enhancing Classical and Quantum Model Transparency and Understanding [0.0]
Deep learning models are often hindered by their lack of interpretability, rendering them "black boxes"
This paper introduces the QIXAI Framework, a novel approach for enhancing neural network interpretability through quantum-inspired techniques.
The framework applies to both quantum and classical systems, demonstrating its potential to improve interpretability and transparency across a range of models.
arXiv Detail & Related papers (2024-10-21T21:55:09Z) - ShadowNet for Data-Centric Quantum System Learning [188.683909185536]
We propose a data-centric learning paradigm combining the strength of neural-network protocols and classical shadows.
Capitalizing on the generalization power of neural networks, this paradigm can be trained offline and excel at predicting previously unseen systems.
We present the instantiation of our paradigm in quantum state tomography and direct fidelity estimation tasks and conduct numerical analysis up to 60 qubits.
arXiv Detail & Related papers (2023-08-22T09:11:53Z) - X-Mesh: Towards Fast and Accurate Text-driven 3D Stylization via Dynamic
Textual Guidance [70.08635216710967]
X-Mesh is a text-driven 3D stylization framework that incorporates a novel Text-guided Dynamic Attention Module.
We introduce a new standard text-mesh benchmark, MIT-30, and two automated metrics, which will enable future research to achieve fair and objective comparisons.
arXiv Detail & Related papers (2023-03-28T06:45:31Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Quantum Self-Attention Neural Networks for Text Classification [8.975913540662441]
We propose a new simple network architecture, called the quantum self-attention neural network (QSANN)
We introduce the self-attention mechanism into quantum neural networks and then utilize a Gaussian projected quantum self-attention serving as a sensible quantum version of self-attention.
Our method exhibits robustness to low-level quantum noises and showcases resilience to quantum neural network architectures.
arXiv Detail & Related papers (2022-05-11T16:50:46Z) - Knowledge Graph Augmented Network Towards Multiview Representation
Learning for Aspect-based Sentiment Analysis [96.53859361560505]
We propose a knowledge graph augmented network (KGAN) to incorporate external knowledge with explicitly syntactic and contextual information.
KGAN captures the sentiment feature representations from multiple perspectives, i.e., context-, syntax- and knowledge-based.
Experiments on three popular ABSA benchmarks demonstrate the effectiveness and robustness of our KGAN.
arXiv Detail & Related papers (2022-01-13T08:25:53Z) - Short Text Classification via Knowledge powered Attention with
Similarity Matrix based CNN [6.6723692875904375]
We propose a knowledge powered attention with similarity matrix based convolutional neural network (KASM) model.
We use knowledge graph (KG) to enrich the semantic representation of short text, specially, the information of parent-entity is introduced in our model.
For the purpose of measuring the importance of knowledge, we introduce the attention mechanisms to choose the important information.
arXiv Detail & Related papers (2020-02-09T12:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.