Hessian QM9: A quantum chemistry database of molecular Hessians in implicit solvents
- URL: http://arxiv.org/abs/2408.08006v1
- Date: Thu, 15 Aug 2024 08:16:11 GMT
- Title: Hessian QM9: A quantum chemistry database of molecular Hessians in implicit solvents
- Authors: Nicholas J. Williams, Lara Kabalan, Ljiljana Stojanovic, Viktor Zolyomi, Edward O. Pyzer-Knapp,
- Abstract summary: Hessian QM9 is the first database of equilibrium configurations and numerical Hessian matrices.
We show that incorporating second derivatives of the potential energy surface into the loss function of a MLIP significantly improves the prediction of vibrational frequencies in all solvent environments.
- Score: 0.31457219084519
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A significant challenge in computational chemistry is developing approximations that accelerate \emph{ab initio} methods while preserving accuracy. Machine learning interatomic potentials (MLIPs) have emerged as a promising solution for constructing atomistic potentials that can be transferred across different molecular and crystalline systems. Most MLIPs are trained only on energies and forces in vacuum, while an improved description of the potential energy surface could be achieved by including the curvature of the potential energy surface. We present Hessian QM9, the first database of equilibrium configurations and numerical Hessian matrices, consisting of 41,645 molecules from the QM9 dataset at the $\omega$B97x/6-31G* level. Molecular Hessians were calculated in vacuum, as well as water, tetrahydrofuran, and toluene using an implicit solvation model. To demonstrate the utility of this dataset, we show that incorporating second derivatives of the potential energy surface into the loss function of a MLIP significantly improves the prediction of vibrational frequencies in all solvent environments, thus making this dataset extremely useful for studying organic molecules in realistic solvent environments for experimental characterization.
Related papers
- Constructing accurate machine-learned potentials and performing highly efficient atomistic simulations to predict structural and thermal properties [6.875235178607604]
We introduce a neuroevolution potential (NEP) trained on a dataset generated from ab initio molecular dynamics (AIMD) simulations.
We calculate the phonon density of states (DOS) and radial distribution function (RDF) using both machine learning potentials.
While the MTP potential offers slightly higher accuracy, the NEP achieves a remarkable 41-fold increase in computational speed.
arXiv Detail & Related papers (2024-11-16T23:16:59Z) - Predicting ionic conductivity in solids from the machine-learned potential energy landscape [68.25662704255433]
Superionic materials are essential for advancing solid-state batteries, which offer improved energy density and safety.
Conventional computational methods for identifying such materials are resource-intensive and not easily scalable.
We propose an approach for the quick and reliable evaluation of ionic conductivity through the analysis of a universal interatomic potential.
arXiv Detail & Related papers (2024-11-11T09:01:36Z) - Predicting solvation free energies with an implicit solvent machine learning potential [0.0]
We introduce a Solvation Free Energy Path Reweighting (ReSolv) framework to parametrize an implicit solvent ML potential for small organic molecules.
With a combination of top-down (experimental hydration free energy data) and bottom-up (ab initio data of molecules in a vacuum) learning, ReSolv bypasses the need for intractable ab initio data of molecules in explicit bulk solvent.
Compared to the explicit solvent ML potential, ReSolv offers a computational speedup of four orders of magnitude and attains closer agreement with experiments.
arXiv Detail & Related papers (2024-05-31T20:28:08Z) - Neural Pfaffians: Solving Many Many-Electron Schrödinger Equations [58.130170155147205]
Neural wave functions accomplished unprecedented accuracies in approximating the ground state of many-electron systems, though at a high computational cost.
Recent works proposed amortizing the cost by learning generalized wave functions across different structures and compounds instead of solving each problem independently.
This work tackles the problem by defining overparametrized, fully learnable neural wave functions suitable for generalization across molecules.
arXiv Detail & Related papers (2024-05-23T16:30:51Z) - Interpolation and differentiation of alchemical degrees of freedom in machine learning interatomic potentials [1.1016723046079784]
We report the use of continuous and differentiable alchemical degrees of freedom in atomistic materials simulations.
The proposed method introduces alchemical atoms with corresponding weights into the input graph, alongside modifications to the message-passing and readout mechanisms of MLIPs.
The end-to-end differentiability of MLIPs enables efficient calculation of the gradient of energy with respect to the compositional weights.
arXiv Detail & Related papers (2024-04-16T17:24:22Z) - BAMBOO: a predictive and transferable machine learning force field framework for liquid electrolyte development [11.682763325188525]
We introduce BAMBOO, a novel framework for molecular dynamics (MD) simulations, with a demonstration of its capabilities in the context of liquid electrolytes for lithium batteries.
BamBOO demonstrates state-of-the-art accuracy in predicting key electrolyte properties such as density, viscosity, and ionic conductivity.
We envision this work as paving the way to a "universal MLFF" capable of simulating properties of common organic liquids.
arXiv Detail & Related papers (2024-04-10T17:31:49Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - Studying chirality imbalance with quantum algorithms [62.997667081978825]
We employ the (1+1) dimensional Nambu-Jona-Lasinio (NJL) model to study the chiral phase structure and chirality charge density of strongly interacting matter.
By performing the Quantum imaginary time evolution (QITE) algorithm, we simulate the (1+1) dimensional NJL model on the lattice at various temperature $T$ and chemical potentials $mu$, $mu_5$.
arXiv Detail & Related papers (2022-10-06T17:12:33Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
Molecular dynamics (MD) simulations allow atomistic insights into chemical and biological processes.
Recently, machine learned force fields (MLFFs) emerged as an alternative means to execute MD simulations.
This work proposes a general approach to constructing accurate MLFFs for large-scale molecular simulations.
arXiv Detail & Related papers (2022-05-17T13:08:28Z) - Graphical Gaussian Process Regression Model for Aqueous Solvation Free
Energy Prediction of Organic Molecules in Redox Flow Battery [2.7919873713279033]
We present a machine learning (ML) model that can learn and predict the aqueous solvation free energy of an organic molecule.
We demonstrate that our ML model can predict the solvation free energy of molecules at chemical accuracy with a mean absolute error of less than 1 kcal/mol.
arXiv Detail & Related papers (2021-06-15T13:48:26Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
Machine-learning force fields (MLFF) should be accurate, computationally and data efficient, and applicable to molecules, materials, and interfaces thereof.
Here, we introduce the Bravais-Inspired Gradient-Domain Machine Learning approach and demonstrate its ability to construct reliable force fields using a training set with just 10-200 atoms.
arXiv Detail & Related papers (2021-06-08T10:14:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.