Nl2Hltl2Plan: Scaling Up Natural Language Understanding for Multi-Robots Through Hierarchical Temporal Logic Task Representation
- URL: http://arxiv.org/abs/2408.08188v4
- Date: Thu, 05 Dec 2024 05:37:46 GMT
- Title: Nl2Hltl2Plan: Scaling Up Natural Language Understanding for Multi-Robots Through Hierarchical Temporal Logic Task Representation
- Authors: Shaojun Xu, Xusheng Luo, Yutong Huang, Letian Leng, Ruixuan Liu, Changliu Liu,
- Abstract summary: Nl2Hltl2Plan is a framework that translates natural language commands into hierarchical Linear Temporal Logic (LTL)<n>First, an LLM transforms instructions into a Hierarchical Task Tree, capturing logical and temporal relations.<n>Next, a fine-tuned LLM converts sub-tasks into flat formulas, which are aggregated into hierarchical specifications.
- Score: 8.180994118420053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enable non-experts to specify long-horizon, multi-robot collaborative tasks, language models are increasingly used to translate natural language commands into formal specifications. However, because translation can occur in multiple ways, such translations may lack accuracy or lead to inefficient multi-robot planning. Our key insight is that concise hierarchical specifications can simplify planning while remaining straightforward to derive from human instructions. We propose Nl2Hltl2Plan, a framework that translates natural language commands into hierarchical Linear Temporal Logic (LTL) and solves the corresponding planning problem. The translation involves two steps leveraging Large Language Models (LLMs). First, an LLM transforms instructions into a Hierarchical Task Tree, capturing logical and temporal relations. Next, a fine-tuned LLM converts sub-tasks into flat LTL formulas, which are aggregated into hierarchical specifications, with the lowest level corresponding to ordered robot actions. These specifications are then used with off-the-shelf planners. Our Nl2Hltl2Plan demonstrates the potential of LLMs in hierarchical reasoning for multi-robot task planning. Evaluations in simulation and real-world experiments with human participants show that Nl2Hltl2Plan outperforms existing methods, handling more complex instructions while achieving higher success rates and lower costs in task allocation and planning. Additional details are available at https://nl2hltl2plan.github.io .
Related papers
- LLM+MAP: Bimanual Robot Task Planning using Large Language Models and Planning Domain Definition Language [17.914580097058106]
Bimanual robotic manipulation presents an inherent challenge due to the complexity involved in the spatial and temporal coordination between two hands.
Existing works predominantly focus on attaining human-level manipulation skills for robotic hands, yet little attention has been paid to task planning on long-horizon timescales.
This paper introduces LLM+MAP, a bimanual planning framework that integrates LLM reasoning and multi-agent planning.
arXiv Detail & Related papers (2025-03-21T17:04:01Z) - A Temporal Planning Framework for Multi-Agent Systems via LLM-Aided Knowledge Base Management [5.548477348501636]
This paper presents a novel framework, called PLANTOR, that integrates Large Language Models (LLMs) with Prolog-based knowledge management and planning for multi-robot tasks.
Results demonstrate that LLMs can produce accurate knowledge bases with modest human feedback, while Prolog guarantees formal correctness and explainability.
This approach underscores the potential of LLM integration for advanced robotics tasks requiring flexible, scalable, and human-understandable planning.
arXiv Detail & Related papers (2025-02-26T13:51:28Z) - Zero-shot Robotic Manipulation with Language-guided Instruction and Formal Task Planning [16.89900521727246]
We propose an innovative language-guided symbolic task planning (LM-SymOpt) framework with optimization.
It is the first expert-free planning framework since we combine the world knowledge from Large Language Models with formal reasoning.
Our experimental results show that LM-SymOpt outperforms existing LLM-based planning approaches.
arXiv Detail & Related papers (2025-01-25T13:33:22Z) - Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
Large Language Models (LLMs) demonstrate strong abilities in common-sense reasoning and interactive decision-making.
Recent techniques have sought to structure LLM outputs using control flow and other code-adjacent techniques to improve planning performance.
We propose REPL-Plan, an LLM planning approach that is fully code-expressive and dynamic.
arXiv Detail & Related papers (2024-11-21T04:23:17Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
We introduce CodePlan, a framework that generates and follows textcode-form plans -- pseudocode that outlines high-level, structured reasoning processes.
CodePlan effectively captures the rich semantics and control flows inherent to sophisticated reasoning tasks.
It achieves a 25.1% relative improvement compared with directly generating responses.
arXiv Detail & Related papers (2024-09-19T04:13:58Z) - From LLMs to Actions: Latent Codes as Bridges in Hierarchical Robot Control [58.72492647570062]
We introduce our method -- Learnable Latent Codes as Bridges (LCB) -- as an alternate architecture to overcome limitations.
We find that methodoutperforms baselines that leverage pure language as the interface layer on tasks that require reasoning and multi-step behaviors.
arXiv Detail & Related papers (2024-05-08T04:14:06Z) - Simultaneous Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications [8.471147498059235]
We introduce a hierarchical structure to sc-LTL specifications with both syntax and semantics, proving it to be more expressive than flat counterparts.
We develop a search-based approach to synthesize plans for multi-robot systems, achieving simultaneous task allocation and planning.
arXiv Detail & Related papers (2024-01-08T16:35:13Z) - Learning adaptive planning representations with natural language
guidance [90.24449752926866]
This paper describes Ada, a framework for automatically constructing task-specific planning representations.
Ada interactively learns a library of planner-compatible high-level action abstractions and low-level controllers adapted to a particular domain of planning tasks.
arXiv Detail & Related papers (2023-12-13T23:35:31Z) - ADaPT: As-Needed Decomposition and Planning with Language Models [131.063805299796]
We introduce As-Needed Decomposition and Planning for complex Tasks (ADaPT)
ADaPT explicitly plans and decomposes complex sub-tasks as-needed, when the Large Language Models is unable to execute them.
Our results demonstrate that ADaPT substantially outperforms established strong baselines.
arXiv Detail & Related papers (2023-11-08T17:59:15Z) - Conformal Temporal Logic Planning using Large Language Models [27.571083913525563]
We consider missions that require accomplishing multiple high-level sub-tasks expressed in natural language (NL), in a temporal and logical order.
Our goal is to design plans, defined as sequences of robot actions, accomplishing-NL tasks.
We propose HERACLEs, a hierarchical neuro-symbolic planner that relies on a novel integration of existing symbolic planners.
arXiv Detail & Related papers (2023-09-18T19:05:25Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
Large Language Models (LLMs) offer the potential to enhance the generalizability as task-agnostic planners.
We introduce ISR-LLM, a novel framework that improves LLM-based planning through an iterative self-refinement process.
We show that ISR-LLM is able to achieve markedly higher success rates in task accomplishments compared to state-of-the-art LLM-based planners.
arXiv Detail & Related papers (2023-08-26T01:31:35Z) - Decomposition-based Hierarchical Task Allocation and Planning for Multi-Robots under Hierarchical Temporal Logic Specifications [9.150196865878234]
We formulate a decomposition-based hierarchical framework for robotic planning with temporal logic specifications.
A Mixed Linear Program is used to assign sub-tasks to various robots.
Our approach was experimentally applied to domains of navigation and manipulation.
arXiv Detail & Related papers (2023-08-20T23:53:13Z) - AutoTAMP: Autoregressive Task and Motion Planning with LLMs as Translators and Checkers [20.857692296678632]
For effective human-robot interaction, robots need to understand, plan, and execute complex, long-horizon tasks.
Recent advances in large language models have shown promise for translating natural language into robot action sequences.
We show that our approach outperforms several methods using LLMs as planners in complex task domains.
arXiv Detail & Related papers (2023-06-10T21:58:29Z) - Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures [2.3698227130544547]
We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt.
We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task.
arXiv Detail & Related papers (2023-06-08T13:10:00Z) - Learning to Plan with Natural Language [111.76828049344839]
Large Language Models (LLMs) have shown remarkable performance in various basic natural language tasks.
For completing the complex task, we still need a plan for the task to guide LLMs to generate the specific solutions step by step.
We propose the Learning to Plan method, which involves two phases: (1) In the first learning task plan phase, it iteratively updates the task plan with new step-by-step solutions and behavioral instructions, which are obtained by prompting LLMs to derive from training error feedback.
arXiv Detail & Related papers (2023-04-20T17:09:12Z) - Procedures as Programs: Hierarchical Control of Situated Agents through
Natural Language [81.73820295186727]
We propose a formalism of procedures as programs, a powerful yet intuitive method of representing hierarchical procedural knowledge for agent command and control.
We instantiate this framework on the IQA and ALFRED datasets for NL instruction following.
arXiv Detail & Related papers (2021-09-16T20:36:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.