論文の概要: Effect of Correlated Errors on Quantum Memory
- arxiv url: http://arxiv.org/abs/2408.08786v1
- Date: Fri, 16 Aug 2024 14:59:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-19 15:03:59.358900
- Title: Effect of Correlated Errors on Quantum Memory
- Title(参考訳): 量子記憶における相関誤差の影響
- Authors: Smita Bagewadi, Avhishek Chatterjee,
- Abstract要約: 隠れ乱数場に基づく古典的相関モデルを導入し,長距離相関による誤差をモデル化する。
このモデルでは, 結合(システムと入浴)ハミルトンモデルによって捕捉されないある種の相関パターンを, ペア項で捉えることができることを示す。
- 参考スコア(独自算出の注目度): 1.3198143828338362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent improvements in LDPC code based fault-tolerance for memory against i.i.d. errors naturally lead to the question of fault-tolerance against errors with long-range correlations. We introduce a classical correlation model based on hidden random fields for modeling such errors. We show that this proposed model can capture certain correlation patterns not captured by the joint (system and bath) Hamiltonian model with pairwise terms. Towards that, we derive a converse result for retention time in the presence of an error distribution, which is from the proposed class and exhibits quadratically small correlations. On the other hand, we show that for a broad subclass of error distributions within the proposed model, Tanner codes can ensure exponential retention time when the error rate is sufficiently low. The proposed model is analytically tractable due to the existence of a rich probability literature and thus, can offer insights complementary to the joint Hamiltonian model with pairwise terms.
- Abstract(参考訳): LDPCコードに基づくメモリのフォールトトレランス、すなわちエラーに対するフォールトトレランスの最近の改善は、長距離相関を持つエラーに対するフォールトトレランスの問題に自然に繋がる。
このような誤りをモデル化するための隠れ乱数場に基づく古典的相関モデルを提案する。
このモデルでは, 結合(システムと入浴)ハミルトンモデルによって捕捉されないある種の相関パターンを, ペア項で捉えることができることを示す。
そこで,提案したクラスから得られた誤差分布の存在下での保持時間に対する逆結果から,2次的に小さな相関関係を示す。
一方,提案したモデル内のエラー分布の幅広いサブクラスでは,エラー率が十分に低い場合に,タナー符号が指数的保持時間を確保することができることを示す。
提案したモデルは、豊富な確率文献が存在するため解析的に抽出可能であり、したがって、ペア項の合同ハミルトンモデルに相補的な洞察を与えることができる。
関連論文リスト
- Towards Robust Text Classification: Mitigating Spurious Correlations with Causal Learning [2.7813683000222653]
本稿では,因果関係へのモデル依存を軽減するために,因果相関ロバスト (CCR) を提案する。
CCRは、逆確率重み付け(IPW)損失関数とともに、反ファクト推論に基づく因果的特徴選択法を統合する。
グループラベルを持たないメソッド間でのCCRの最先端性能を示し、場合によってはグループラベルを利用するモデルと競合する。
論文 参考訳(メタデータ) (2024-11-01T21:29:07Z) - Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators [8.585650361148558]
本研究では,非局所的同化代理モデルとその構造モデル誤差を学習するための新しい枠組みを提案する。
このフレームワークは、長期シミュレーションにおける均質化材料応答予測のための離散性適応不確実性定量化を提供する。
論文 参考訳(メタデータ) (2024-10-27T04:17:27Z) - Multivariate Probabilistic Time Series Forecasting with Correlated Errors [17.212396544233307]
本稿では,自動回帰モデルのための複数ステップでエラーの共分散構造を学習するプラグイン・アンド・プレイ手法を提案する。
RNNとTransformerアーキテクチャ上に構築された確率モデルについて,本手法の評価を行った。
論文 参考訳(メタデータ) (2024-02-01T20:27:19Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - Sample Complexity Bounds for Score-Matching: Causal Discovery and
Generative Modeling [82.36856860383291]
我々は,標準深部ReLUニューラルネットワークをトレーニングすることにより,スコア関数の正確な推定が可能であることを実証した。
スコアマッチングに基づく因果発見手法を用いて因果関係の回復の誤差率の限界を確立する。
論文 参考訳(メタデータ) (2023-10-27T13:09:56Z) - On how to avoid exacerbating spurious correlations when models are
overparameterized [33.315813572333745]
VS-lossは、たとえスプリアス機能が強いとしても、マイノリティに公平なモデルを学ぶことを示す。
これまでの研究と比較すると、我々の境界はより一般的なモデルであり、それらは漸近的ではなく、極端な不均衡のシナリオにも適用される。
論文 参考訳(メタデータ) (2022-06-25T21:53:44Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
因果機構は構造因果モデルによって記述できる。
最先端の人工知能の大きな欠点の1つは、説明責任の欠如である。
論文 参考訳(メタデータ) (2021-09-06T14:52:58Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
因果効果を推定する際の主な課題の1つである。
そこで本研究では,任意の数の高次元潜入共創者を置き換える新たな因果還元法を提案する。
パラメータ化縮小モデルを観測データと介入データから共同で推定する学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-08T14:29:07Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Error Autocorrelation Objective Function for Improved System Modeling [1.2760453906939444]
我々は,誤差を最小限に抑えるだけでなく,誤差間の相関を最小化する「ホワイトニング」コスト関数「Ljung-Box statistic」を導入する。
その結果、リカレントニューラルネットワーク(RNN)とイメージオートエンコーダ(2d)の一般化が大幅に改善された。
論文 参考訳(メタデータ) (2020-08-08T19:20:32Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。