Dynamic Graph Representation Learning for Passenger Behavior Prediction
- URL: http://arxiv.org/abs/2408.09092v1
- Date: Sat, 17 Aug 2024 04:35:17 GMT
- Title: Dynamic Graph Representation Learning for Passenger Behavior Prediction
- Authors: Mingxuan Xie, Tao Zou, Junchen Ye, Bowen Du, Runhe Huang,
- Abstract summary: Passenger behavior prediction aims to track passenger travel patterns through historical boarding and alighting data.
This is crucial for smart city development and public transportation planning.
Existing research relies on statistical methods and sequential models to learn from individual historical interactions.
- Score: 7.179458364817048
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Passenger behavior prediction aims to track passenger travel patterns through historical boarding and alighting data, enabling the analysis of urban station passenger flow and timely risk management. This is crucial for smart city development and public transportation planning. Existing research primarily relies on statistical methods and sequential models to learn from individual historical interactions, which ignores the correlations between passengers and stations. To address these issues, this paper proposes DyGPP, which leverages dynamic graphs to capture the intricate evolution of passenger behavior. First, we formalize passengers and stations as heterogeneous vertices in a dynamic graph, with connections between vertices representing interactions between passengers and stations. Then, we sample the historical interaction sequences for passengers and stations separately. We capture the temporal patterns from individual sequences and correlate the temporal behavior between the two sequences. Finally, we use an MLP-based encoder to learn the temporal patterns in the interactions and generate real-time representations of passengers and stations. Experiments on real-world datasets confirmed that DyGPP outperformed current models in the behavior prediction task, demonstrating the superiority of our model.
Related papers
- Planning with Adaptive World Models for Autonomous Driving [50.4439896514353]
Motion planners (MPs) are crucial for safe navigation in complex urban environments.
nuPlan, a recently released MP benchmark, addresses this limitation by augmenting real-world driving logs with closed-loop simulation logic.
We present AdaptiveDriver, a model-predictive control (MPC) based planner that unrolls different world models conditioned on BehaviorNet's predictions.
arXiv Detail & Related papers (2024-06-15T18:53:45Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - Spatio-Temporal Dynamic Graph Relation Learning for Urban Metro Flow
Prediction [10.300311879377734]
Different metro stations, e.g. transfer and non-transfer stations, have unique traffic patterns.
It is challenging to model complex-temporal dynamic relation of metro stations.
arXiv Detail & Related papers (2022-04-06T08:07:40Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - Exploring Human Mobility for Multi-Pattern Passenger Prediction: A Graph
Learning Framework [10.75153377806738]
We propose a multi-pattern passenger flow prediction framework, MPGCN, based on Graph Convolutional Network (GCN)
We employ GCN to extract features from the graph by learning useful topology information and introduce a deep clustering method to recognize mobility patterns hidden in bus passengers.
To the best of our knowledge, this paper is the first work to adopt a multipattern approach to predict the bus passenger flow from graph learning.
arXiv Detail & Related papers (2022-02-17T06:17:23Z) - Individual Mobility Prediction via Attentive Marked Temporal Point
Processes [4.221871357181261]
We propose a novel point process-based model to model human mobility and predict the whole trip $(t,o,d)$ in a joint manner.
Experimental results on two large metro trip datasets demonstrate the superior performance of AMTPP.
arXiv Detail & Related papers (2021-09-06T19:55:42Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
We present a Sparse Graph Convolution Network(SGCN) for pedestrian trajectory prediction.
Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.
arXiv Detail & Related papers (2021-04-04T03:17:42Z) - Passenger Mobility Prediction via Representation Learning for Dynamic
Directed and Weighted Graph [31.062303389341317]
We propose a noveltemporal graph attention network namely Gallat (Graph prediction with all attention) as a solution.
In Gallat, by comprehensively incorporating those three intrinsic properties of DDW graphs, we build three attention layers to fully capture the dependencies among different regions across all historical time slots.
We evaluate proposed model on real-world datasets, and our experimental results demonstrate that Gallat outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-01-04T03:32:01Z) - Graph-SIM: A Graph-based Spatiotemporal Interaction Modelling for
Pedestrian Action Prediction [10.580548257913843]
We propose a novel graph-based model for predicting pedestrian crossing action.
We introduce a new dataset that provides 3D bounding box and pedestrian behavioural annotations for the existing nuScenes dataset.
Our approach achieves state-of-the-art performance by improving on various metrics by more than 15% in comparison to existing methods.
arXiv Detail & Related papers (2020-12-03T18:28:27Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.