論文の概要: AI Managed Emergency Documentation with a Pretrained Model
- arxiv url: http://arxiv.org/abs/2408.09193v1
- Date: Sat, 17 Aug 2024 13:11:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 21:50:21.954297
- Title: AI Managed Emergency Documentation with a Pretrained Model
- Title(参考訳): 事前訓練モデルによるAI管理型緊急文書作成
- Authors: David Menzies, Sean Kirwan, Ahmad Albarqawi,
- Abstract要約: 本研究では,救急部(ED)退院書状作成の効率化と品質向上を目的とした大規模言語モデルシステムについて検討した。
我々は,ED放電文字の生成における人工知能ソフトウェアの有用性と,この技術に対する医師の態度について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates the use of a large language model system to improve efficiency and quality in emergency department (ED) discharge letter writing. Time constraints and infrastructural deficits make compliance with current discharge letter targets difficult. We explored potential efficiencies from an artificial intelligence software in the generation of ED discharge letters and the attitudes of doctors toward this technology. The evaluated system leverages advanced techniques to fine-tune a model to generate discharge summaries from short-hand inputs, including voice, text, and electronic health record data. Nineteen physicians with emergency medicine experience evaluated the system text and voice-to-text interfaces against manual typing. The results showed significant time savings with MedWrite LLM interfaces compared to manual methods.
- Abstract(参考訳): 本研究では,救急部(ED)退院書状作成の効率化と品質向上を目的とした大規模言語モデルシステムについて検討した。
時間的制約とインフラ的欠陥は、現在の排出手紙の目標に準拠することを困難にしている。
我々は,ED放電文字の生成における人工知能ソフトウェアの有用性と,この技術に対する医師の態度について検討した。
評価システムは、音声、テキスト、電子健康記録データなど、手短な入力から放電サマリーを生成するために、高度な技術を活用してモデルを微調整する。
救急医療経験のある19名の医師が手動タイピングに対するシステムテキストと音声-テキストインターフェースを評価した。
その結果,MedWrite LLMインタフェースでは手作業に比べてかなりの時間節約が可能であった。
関連論文リスト
- A GEN AI Framework for Medical Note Generation [3.7444770630637167]
MediNotesは、医療会話からSOAP(Subjective, Objective, Assessment, Plan)ノートの作成を自動化するために設計された高度な生成AIフレームワークである。
MediNotesはLarge Language Models (LLM)、Retrieval-Augmented Generation (RAG)、Automatic Speech Recognition (ASR)を統合し、テキスト入力と音声入力の両方をリアルタイムで、記録されたオーディオからキャプチャし、処理する。
論文 参考訳(メタデータ) (2024-09-27T23:05:02Z) - Automated Information Extraction from Thyroid Operation Narrative: A Comparative Study of GPT-4 and Fine-tuned KoELECTRA [1.137357582959183]
本研究は, GPT-4モデルと比較し, 微調整KoELECTRAモデルの変形特性に着目した。
この研究は、高度な自然言語処理(NLP)技術を活用し、より高度なデータ処理システムへのパラダイムシフトを促進する。
論文 参考訳(メタデータ) (2024-06-12T06:44:05Z) - GAMedX: Generative AI-based Medical Entity Data Extractor Using Large Language Models [1.123722364748134]
本稿では,Large Language Models(LLMs)を利用した名前付きエンティティ認識(NER)アプローチであるGAMedXを紹介する。
この方法論は、NERのためのオープンソースのLCMを統合し、特殊な医学用語の複雑さをナビゲートするために、連鎖プロンプトとピダンティックスキーマを構造化出力に利用している。
その結果, 評価データセットの1つに対して, 98%の精度でROUGE F1の有意なスコアが得られた。
論文 参考訳(メタデータ) (2024-05-31T02:53:22Z) - WisPerMed at "Discharge Me!": Advancing Text Generation in Healthcare with Large Language Models, Dynamic Expert Selection, and Priming Techniques on MIMIC-IV [0.38084074204911494]
本研究は, アウトレット・サマリーの「Brief Hospital Course」と「Discharge Instructions」を自動生成するために, 最先端の言語モデルを活用することを目的としている。
医療施設において, 自動化がドキュメンテーションの精度を向上し, クリニックのバーンアウトを緩和し, 運用効率を向上させる方法について検討した。
論文 参考訳(メタデータ) (2024-05-18T10:56:45Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
アルツハイマー病(AD)は高齢者に特に顕著である。
事前学習モデルの最近の進歩は、AD検出モデリングを低レベル特徴から高レベル表現にシフトさせる動機付けとなっている。
本稿では,高レベルの音響・言語的特徴から,より優れたAD関連手がかりを抽出する,いくつかの効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-03-14T16:03:28Z) - Retrieval-Augmented and Knowledge-Grounded Language Models for Faithful Clinical Medicine [68.7814360102644]
本稿では,Re$3$Writer法を提案する。
本手法が患者の退院指示生成に有効であることを示す。
論文 参考訳(メタデータ) (2022-10-23T16:34:39Z) - Summarizing Patients Problems from Hospital Progress Notes Using
Pre-trained Sequence-to-Sequence Models [9.879960506853145]
問題リストの要約には、臨床文書を理解し、抽象化し、生成するモデルが必要である。
当科では,入院時に提供者の進捗記録からの入力を用いて,患者の日常診療計画における問題点のリストを作成することを目的とした,新たなNLPタスクを提案する。
論文 参考訳(メタデータ) (2022-08-17T17:07:35Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
本稿では,単語の単純化と言語モデリングに基づく医療用テキストの自動作成手法を提案する。
我々は,公開医療文のデータセットペアと,臨床医による簡易化版を用いている。
本手法は,医学フォーラムデータに基づく言語モデルを用いて,文法と本来の意味の両方を保存しながら,より単純な文を生成する。
論文 参考訳(メタデータ) (2021-12-23T16:11:19Z) - Predicting Patient Readmission Risk from Medical Text via Knowledge
Graph Enhanced Multiview Graph Convolution [67.72545656557858]
本稿では,電子健康記録の医用テキストを予測に用いる新しい手法を提案する。
外部知識グラフによって強化された多視点グラフを有する患者の退院サマリーを表現している。
実験により,本手法の有効性が証明され,最先端の性能が得られた。
論文 参考訳(メタデータ) (2021-12-19T01:45:57Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
本稿では,患者の医療旅行におけるコンテキスト依存と時間的関係を捉える,新たな自己注意機構を提案する。
エンド・ツー・エンドの双方向時間エンコーダネットワーク(BiteNet)が患者の旅路の表現を学習する。
実世界のEHRデータセットを用いた2つの教師付き予測と2つの教師なしクラスタリングタスクにおける手法の有効性を評価した。
論文 参考訳(メタデータ) (2020-09-24T00:42:36Z) - Transforming unstructured voice and text data into insight for paramedic
emergency service using recurrent and convolutional neural networks [68.8204255655161]
救急隊員は救急車内で限られた時間内に救命判断をしなければならないことが多い。
本研究の目的は、音声とテキストデータを自動的に融合して、救急隊員に適切な状況認識情報を提供することである。
論文 参考訳(メタデータ) (2020-05-30T06:47:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。