論文の概要: Branch and Bound to Assess Stability of Regression Coefficients in Uncertain Models
- arxiv url: http://arxiv.org/abs/2408.09634v1
- Date: Mon, 19 Aug 2024 01:37:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 17:53:49.687647
- Title: Branch and Bound to Assess Stability of Regression Coefficients in Uncertain Models
- Title(参考訳): 不確かさモデルにおける回帰係数の安定性を評価する分岐と境界
- Authors: Brian Knaeble, R. Mitchell Hughes, George Rudolph, Mark A. Abramson, Daniel Razo,
- Abstract要約: 提案アルゴリズムは,数学的な結果のサポート,サンプルアプリケーション,コンピュータコードへのリンクなどとともに導入する。
これは、研究者が高次元データを要約し、不確実なモデルにおける回帰係数の安定性を評価するのに役立つ。
- 参考スコア(独自算出の注目度): 0.6990493129893112
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It can be difficult to interpret a coefficient of an uncertain model. A slope coefficient of a regression model may change as covariates are added or removed from the model. In the context of high-dimensional data, there are too many model extensions to check. However, as we show here, it is possible to efficiently search, with a branch and bound algorithm, for maximum and minimum values of that adjusted slope coefficient over a discrete space of regularized regression models. Here we introduce our algorithm, along with supporting mathematical results, an example application, and a link to our computer code, to help researchers summarize high-dimensional data and assess the stability of regression coefficients in uncertain models.
- Abstract(参考訳): 不確実モデルの係数を解釈することは困難である。
回帰モデルの傾斜係数は、共変量の追加やモデルからの除去によって変化することがある。
高次元データのコンテキストでは、チェックするモデル拡張が多すぎる。
しかし、ここで示すように、正規化回帰モデルの離散空間上の調整された傾斜係数の最大値と最小値に対して、分岐および有界アルゴリズムを用いて効率的に探索することが可能である。
本稿では,高次元データを要約し,不確実なモデルにおける回帰係数の安定性を評価するために,数学的結果のサポート,サンプルアプリケーション,コンピュータコードへのリンクを紹介する。
関連論文リスト
- Stochastic Gradient Descent for Nonparametric Regression [11.24895028006405]
本稿では,非パラメトリック加法モデルをトレーニングするための反復アルゴリズムを提案する。
結果の不等式は、モデルの誤特定を可能にする託宣を満足していることが示される。
論文 参考訳(メタデータ) (2024-01-01T08:03:52Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
関数型隠れ統計モデル(f-HD)のためのペナル化極大推定器(PMLE)に基づく新しいモデル選択アルゴリズムを提案する。
このアルゴリズムは反復最適化に基づいており、適応最小限の収縮・セレクタ演算子(GMSOLAS)ペナルティ関数を用いており、これは不給付のf-HD最大線量推定器によって得られる。
論文 参考訳(メタデータ) (2022-08-10T19:17:45Z) - Scalable mixed-domain Gaussian process modeling and model reduction for longitudinal data [5.00301731167245]
混合領域共分散関数に対する基底関数近似スキームを導出する。
我々は,GPモデルの精度をランタイムのごく一部で正確に近似できることを示す。
また、より小さく、より解釈可能なモデルを得るためのスケーラブルなモデルリダクションワークフローを実証する。
論文 参考訳(メタデータ) (2021-11-03T04:47:37Z) - T-LoHo: A Bayesian Regularization Model for Structured Sparsity and
Smoothness on Graphs [0.0]
グラフ構造化データでは、構造化されたスパーシリティと滑らかさが団結する傾向にある。
グラフィカルな関係を持つ高次元パラメータに先立って提案する。
構造された空間と滑らかさを同時に検出するために使用します。
論文 参考訳(メタデータ) (2021-07-06T10:10:03Z) - A Hypergradient Approach to Robust Regression without Correspondence [85.49775273716503]
本稿では,入力データと出力データとの対応が不十分な回帰問題について考察する。
ほとんどの既存手法はサンプルサイズが小さい場合にのみ適用できる。
シャッフル回帰問題に対する新しい計算フレームワークであるROBOTを提案する。
論文 参考訳(メタデータ) (2020-11-30T21:47:38Z) - Autoregressive Score Matching [113.4502004812927]
自動回帰条件スコアモデル(AR-CSM)を提案する。
AR-CSMモデルでは、このデータ分布とモデル分布のばらつきを効率的に計算し、最適化することができ、高価なサンプリングや対向訓練を必要としない。
本研究では,合成データに対する密度推定,画像生成,画像復調,暗黙エンコーダを用いた潜在変数モデルの訓練に応用できることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:01:24Z) - Ridge Regression Revisited: Debiasing, Thresholding and Bootstrap [4.142720557665472]
リッジレグレッションは、デバイアスとしきい値の設定の後、Lassoに対していくつかの利点をもたらすので、見直す価値があるかもしれない。
本稿では,デバイアス付き及びしきい値付きリッジ回帰法を定義し,一貫性とガウス近似の定理を証明した。
推定に加えて予測の問題も考慮し,予測間隔に合わせた新しいハイブリッドブートストラップアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-17T05:04:10Z) - Bayesian Sparse Covariance Structure Analysis for Correlated Count Data [3.867363075280544]
犯罪の潜在的なリスクを支配している潜伏変数に対するガウス図式モデルを仮定する。
提案したモデルを用いて,潜在変数のスパース逆共分散を推定し,偏相関係数を評価する。
論文 参考訳(メタデータ) (2020-06-05T05:34:35Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。